hyperstone

32-Bit-Microprocessor
User’s Manual

—== hyperstone
[~ IectromcscmbH

This document contains information on a new product. Specifications
and information herein are subject to change without notice. hyperstone
electronics GmbH reserves the right to make changes to improve
functioning. Although the information in this document has been
any liability arising out of the use of the product or circuit described
herein.

hyperstone electronics GmbH does not recommend the use of the
Hyperstone microprocessor in life support applications wherein afailure
or malfunction of the microprocessor may directly threaten life or cause
injury. The user of the Hyperstone microprocessor in life support
applications assumes all risks of such use and indemnifies hyperstone
electronics GmbH against all damages.

For further information, please contact:

hyperstone electronics GmbH
Robert-Bosch-Str. 11

D-7750 Konstanz
West-Germany

—== hyperstone
W lectronicscms

Tel. 07531-67789
Fax. 07531-51725

©1987 Ingenieurbuero Otto Mueller
Issue April 1990

Table of Contents

1 Architecture

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8
1.9

2.1
2.2
2.3

2.4
2.5

Introduction

Block Diagram

Register Model

Local Register Set

Global Register Set

1.5.1 Program Counter PC
1.5.2 Stack Pointer SP

1.5.3 Upper Stack Bound UB
1.5.4 Status Register SR
1.5.5 Bus Control Register BCR (see 5.2)
1.5.6 Status Information
1.5.7 Privilege States
Register Data Types

Memory Organization

Stack

Instruction Cache

Instructions General

Instruction Notation

Instruction Execution

Instruction Formats

2.3.1 Table of Immediate Values
2.3.2 Table of Instruction Codes
Entry Table

Instruction Timing

P et et ek et Pk ekt bk et ek et et ek ek et gt

NN NN NN

0 N O W N e

3 Instruction Set

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

Memory Instructions

3.1.1 Address Modes

3.1.2 Load Instructions
3.1.3 Store Instructions
3.1.4 Exchange Instruction
Move Word Instructions
Move Double-Word Instruction
Logical Instructions

Invert Instruction

Mask Instruction

Add Instructions

Sum Instructions

Subtract Instructions
Negate Instructions

Multiply Word Instruction

Multiply Double-Word Instructions

Divide Instructions

Shift Left Instructions

Shift Right Instructions
Rotate Left Instruction
Index Move Instructions
Check Instructions

No Operation Instruction
Compare Instructions
Compare Bit Instructions
Test Leading Zero's Instruction
Set Stack Address Instruction
Set Conditional Instructions
Branch Instructions

Delayed Branch Instructions
Call Instructions

Trap Instructions

Frame Instruction

Return Instruction

O L L W W L W W W W W W W W W WWWWWWWWWWWWWWLWWwWLWwwow

3

Instruction Set (continued)

3.31 Fetch Instruction

3.32 Software Instructions

3.32.1
3.32.2
3.32.3

Exceptions

Do Instruction
Extend Instruction

Floating-Point Instructions

4.1 Exception Processing

4.2 Exception Types

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7

Reset

Pointer, Frame and Privilege Error
Data Page Fault

Range Error

Interrupt Exception

Trace Exception

Instruction Page Fault

4.3 Exception Backtracking

Bus Interface

5.1 Bus Control General

5.2 Bus Control Register BCR
5.3 1/0 Bus Control

5.4 Bus Signals

5.5 Bus Cycles

5.5.1
5.5.2
5.5.3
5.5.4
5.5.5

[~ - ad
J.J.0

5.5.7

Read Access
Write Access
Exchange Access
Read/Write Access
Write/Read Access

DRAM Access

DRAM Refresh

5.6 Bus Arbitration
5.7 D.C. Characteristics
5.8 A.C. Characteristics

LT S O N S SN N

[SANEN S, B 51 B) RS NS,) IS, S 3 |

LSS B B 5 B3|

W W W w w

AR R W W W NN -

W

11
12
13
14
15

17
18
19
20

6 Mechanical Data

6.1
6.2
6.3
6.4
6.5

Pin Configuration - View from Top Side
Pin Configuration - View from Pin Side
Pin Cross Reference by Pin Name

Pin Cross Reference by Location

Package Dimensions

(<2 T+ >R < > B >R =]

W N

wm

1 -1
1 Architecture
1.1 Introduction

The microprocessor presented here cannot be classed with the conventional RISC or
CISC architectures. It constitutes a class of its own: The new class of RISC-like
computers executing a large set of powerful and yet concise instructions in one cycle.
The burst-rate speed of one cycle per instruction is almost sustained in many
programs without an external cache memory. This high throughput is not achieved by
raw clock speed, it is due to a sophisticated new architecture.

The speed is obtained by an optimized combination of the following features:

- The most recent stack frames are kept in a register set, thereby reducing data
memory accesses to a minimum by keeping almost all local data in registers.

- Pipelined memory access allows overlapping of memory accesses with execution.

- On-chip instruction cache omits instruction fetch in inner loops and provides
strategic prefetch.

- Variable-length instructions of 16, 32 or 48 bits provide a large, powerful in-
struction set, thereby reducing the number of instructions to be executed.

- Primarily used 16-bit instructions halve the memory accesses required for in-
struction fetch in comparison to conventional RISC architectures with fixed-
length 32-bit instructions, yielding also even better code economy than conven-
tional CISC architectures.

- Regular instruction set allows hardwiring of control logic at low component
count.

- Most instructions execute in one cycle.

- Fast Call and Return by parameter passing via registers.

- An instruction pipeline depth of only two stages — decode/execute — provides
branching without insertion of wait cycles in combination with Delayed Branch
instructions.

- Range and pointer checks required by Pascal, Modula-2 and Ada are performed
without speed penalty, thus, these checks need no longer be turned off, thereby
providing higher runtime reliability.

- Separate address and data buses provide a throughput of one 32-bit word each

cycle.

1.1 Introduction (continued)

The features noted above contribute to reduce the number of idle wait cycles to a
bare minimum. Thus, the target of executing exactly one instruction in each cycle is
almost met.

The processor is designed to sustain its execution rate without an external cache
mory, only a standard DRAM memory with fast page mode reading or writing one
word in each cycle is required.

The processor is implemented in 1.2y CMOS on a chip with a core of 42 mm?

, the
transistor count is ca. 85 000. Most of the transistors are used for the register stack
and the on-chip instruction cache; only an insignificant number are required for the
control logic.

Due to its low system cost — no external cache, small chip area — the processor can

be used in high-speed yet cost- and speed-efficient embedded systems.
The following description gives a brief architectural overview:

Registers:
- 19 global and 64 local registers of 32 bits each
- Directly addressable are 16 global and up to 16 local registers

Flags:
- Zero(Z), negative(N), carry(C) and overflow(V) flag
- Interrupt-lock, trace-mode, trace-pending, supervisor state, cache-mode and high

global flag

Register Data Types:
- Unsigned integer, signed integer, bitstring, IEEE-754 floating-point, each either
32 or 64 bits

Memory:
- Address space of 4 Gbytes
- Separate I/O address space
- Load/Store architecture
- Pipelined memory and 1/O accesses

- High-order data consistently located and addressed at lower address

MMU
- Fault-causing memory instructions can easily be identified and repeated

- Instructions and double-word data may cross page boundaries

1.1 Introduction (continued)

Memory Data Types:
- Unsigned and signed byte (8 bit)
- Unsigned and signed halfword (16 bit), located on halfword boundary
- Undedicated word (32 bit), located on word boundary
- Undedicated double-word (64 bit), located on word boundary

Runtime Stack:
- Runtime stack is divided into memory part and register part
- Register part is implemented by the 64 local registers holding the most recent
stack frame(s)
- Current stack frame (maximum 16 registers) is always kept in register part of
the stack
- Data transfer between memory and register part of the stack is automatic

- Upper stack bound is guarded

Instruction Cache:
- An instruction cache of 128 bytes reduces instruction memory accesses substan-

tially

Instructions General:

- Variable-length instructions of one, two or three halfwords halve required me-
mory bandwidth

- Pipeline depth of only two stages, assures immediate refill after branches

- Register instructions of type "source operator destination -> destination" or
"source operator immediate -> destination"

- All 32 or 64 bits participate in an operation

- Immediate operands of 5, 16 and 32 bits, zero- or sign-expanded

- Two sets of signed arithmetical instructions: instructions set or clear either only

the overflow flag or trap additionally to a Range Error routine on overflow

1.1

Introduction (continued)

Instruction Summary:

Memory instructions pipelined to a depth of two stages, trap on address register

equal to zero (check for invalid pointers)

placement (including PC relative), register postincrement by displacement (next
address), absolute, stack address, /O absolute and 1/O displacement

Load, all data types, bytes and halfwords right adjusted and zero- or sign-expan-
ded, execution proceeds after Load until data is needed

Store, all data types, trap when unsigned or signed range of byte or halfword is
exceeded

Exchange word memory <-> register (for semaphores)

Move, Move immediate, Move double-word

Logical instructions AND, AND not, OR, XOR, NOT, AND not immediate, OR
immediate, XOR immediate

Mask source and immediate -> destination

Add unsigned/signed, Add signed with trap on overflow, Add with carry

Add unsigned/signed immediate, Add signed immediate with trap on overflow
Sum source + immediate -> destination, unsigned/signed and signed with trap on
overflow

Subtract unsigned/signed, Subtract signed with trap on overflow, Subtract with
carry

Negate unsigned/signed, Negate signed with trap on overflow

Multiply word * word -> low-order word signed with trap on low-order word
overflow, Multiply word * word -> double-word unsigned and signed

Divide double-word by word -> quotient and remainder, unsigned and signed

Shift left unsigned/signed, single and double-word, by constant and by content of
register, Shift left signed by constant with trap on loss of high-order bits

Shift right unsigned and signed, single and double-word, by constant and by con-
tent of register

Rotate left single word by content of register

Index Move, check an index value for bounds and move it scaled by 1, 2, 4 or 8
Check a value for an upper bound specified in a register or check for zero
Compare unsigned/signed, Compare unsigned/signed immediate

Compare bits, Compare bits immediate, Compare any byte zero

Test number of leading zeros

1.1 Introduction (continued)

- Set Conditional, save conditions in a register

- Branch unconditional and conditional (12 conditions)

- Delayed Branch unconditional and conditional (12 conditions)

- Call subprogram, unconditional and on overflow

- Trap to supervisor subprogram, unconditional and conditional (11 conditions)

- Frame, structure a new stack frame, include parameters in frame addressing, set
frame length, restore reserve length and check for upper stack bound

- Return from subprogram, restore program counter, status register and return-
frame

- Software instructions, call an associated subprogram and pass a source operand
and the address of a destination operand to it

- Floating-point instructions are architecturally fully integrated, they are executed
as Software instructions by the present version. Floating-point Add, Subtract,
Multiply, Divide, Compare and Compare unordered for single and double-preci-

sion, and Convert single <-> double are provided.

Note: The omission of packed BCD arithmetic is not an oversight. It is recommended
that decimal numbers are represented as scaled two's complement integers. A decimal

number is scaled by a factor of 10 for each digit right to the decimal point.

Exceptions:
- Pointer, Privilege, Frame and Range Error, Data and Instruction Page Fault,
Interrupt and Trace mode exception
- Error- and fault-causing instructions can be identified by backtracking, allowing

a very detailed error analysis

Bus Interface:
- Separate address and data buses of 30 and 32 bits respectively provide a
throughput of four bytes at each clock cycle
- Alternating between different bus masters from cycle to cycle, with a loss of

only one bus cycle

1.2 Block Diagram

Register Set

64 Local

-

¥ X-Decode

-
Instruction
Load
Cache
Decode
a8 A

!

Instruction

Decode

U

)@ Y- Decode
19 Global
Instr.
Cache
v pC Control
~.
Y |
<
ALU

Barrelshifter

W A

Instruction
Execution

Control Unit

\ Instruction Prefetch

Control Unit

|

Store Data

Register

1

S

U

Data Bus

Memory Address Register

Address Bus

1.3

[=]

G2

G16
G17
G18
G19
G20

LO

L15

63

Register Model

31

Global Register Set

o

(=]

—

Status Register SR

Floating-Point Exception Register

G3..G15

Reserved

Reserved

Stack Pointer SP

Upper Stack Bound UB

Bus Control Register BCR

G21..G31 Reserved

31

Local Register Set 0..63

LO

L1..L14

L15

Bit 31

most significant bit, bit 0 = least significant bit

1.3 Register Model (continued)

Status Register G1 (bits 31..16):

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FP FL [ILC | S | P I T [

L— Trace-Mode Flag
Trace Pending Flag
Supervisor State Flag

Instruction-Length Code

‘— Frame Pointer — Frame Length

Status register G1 (bits 15..0):

15 14 13 12 11 10 9 8 7 3

(T [[elaleLelslc]

Carry Flag
Zero Flag
Negative Flag

Overflow Flag

'— Cache-Mode Flag

'— High Global Flag

L- Reserved

'‘— Floating-Point Trap Enable

'— Floating-Point Rounding Mode

— Interrupt-Lock Flag

Floating-Point Exception Register G2 (bits 31..0):

L— Reserved [— Floating-Point
Accrued Exceptions

Reserved Floating-Point Actual Exceptions

1.4 Local Register Set

The architecture provides a set of 64 local registers of 32 bits each. The local regi-
sters 0..63 represent the register part of the stack, containing the most recent stack
frame(s).
The local registers can be addressed by the register code (0..15) of an instruction as
L0..L15 only relative to the frame pointer FP; they can also be addressed absolutely
as part of the stack in the stack address mode (see address modes).
The absolute local register address is calculated from the register code as:

absolute local register address := (FP + register code) modulo 64.
That is, only the least significant six bits of the sum FP + register code are used and
thus, the absolute local register addresses for L0..L15 wrap around modulo 64.
The absolute local register addresses for FP + register code + 1 or FP + FL + offset

are calculated accordingly.

1.5 Global Register Set

The architecture provides 19 global registers of 32 bits each. These are:

GO Program counter PC
Gl1 Status register SR
G2 Floating-point exception register

G3..G15 General purpose registers
G16..G17 Reserved

G18 Stack Pointer SP
G19 Upper stack Bound UB
G20 Bus control register BCR (see bus interface)

G21..G31 Reserved

G0..G15 can be addressed directly by the register code (0..15) of an instruction.
G18..G20 can be addressed only via the high global flag H by a MOV instruction.

1.5.1 Program Counter PC

GO is the program counter PC. It is updated to the address of the next instruction
through instruction execution. Besides this implicit updating, the PC can also be ad-
dressed like a regular source or destination register. When the PC is referenced as an
operand, the value supplied is the address of the first byte after the instruction which
references it, except when referenced by a delay instruction with a preceding delayed

branch taken (see Delayed Branch instructions).

1-10
1.5.1 Program Counter PC (continued)

Placing a result in the PC has the effect of a branch taken. Bit zero of the PC is

always zero, regardless of any value placed in the PC.

1.5.2 Stack Pointer SP

G18 is the stack pointer SP. The SP contains the top address + 4 of the memory part
of the stack, that is the address of the first free memory location in which the first
local register would be saved by a push operation (see Frame instruction for details).
Stack growth is from low to high address.

Bits one and zero of the SP must always be cleared to zero. The SP can be addres-
sed only via the high global flag H being set. Copying an operand to the SP is a pri-

vileged operation.

1.5.3 Upper Stack Bound UB

G19 is the upper stack bound UB. The UB contains the address beyond the highest
legal memory stack location. It is used by the Frame instruction to inhibit stack
overflow.

Bits one and zero of the UB must always be cleared to zero. The UB can be addres-
sed only via the high global flag H being set. Copying an operand to the UB is a pri-

vileged operation.

1.5.4 Bus Control Register BCR

G20 is the bus control register BCR. Its content defines the options possible for bus
cycle, parity and refresh control. It is described in detail in the bus interface descrip-

tion in chapter 5.

1.5.5 Status Register SR

Gl is the status register SR. Its content is updated by instruction execution. Besides
this implicit updating, the SR can also be addressed like a regular register. When ad-
dressed as source or destination operand, all 32 bits are used as an operand. However,
only bits 15..0 of a result can be placed in bits 15..0 of the SR, bits 31..16 of the
result are discarded and bits 31..16 of the SR remain unchanged. The full content of
the SR is replaced only by the Return Instruction. A result placed in the SR overrules

any setting or clearing of the condition flags by conditions.

1-11

1.5.6 Status Information

The status register SR contains the following status information:

C

Bit zero is the carry condition flag C. In general, when set it indicates that
the unsigned integer range is exceeded. At add operations, it indicates a
carry out of bit 31 of the result. At subtract operations, it indicates a bor-

row (inverse carry) into bit 31 of the result.

Bit one is the zero condition flag Z. When set, it indicates that all 32 or

64 result bits are equal to zero regardless of any carry, borrow or overflow.

Bit two is the negative condition flag N. It indicates the arithmetic correct
(true) sign of the result. At add and subtract operations it is derived as
N := overflow xor result bit 31, which is the same as the sign bit 31 of the
result when no overflow occurs. In the case of overflow, N still reflects the

correct sign while bit 31 of the result reflects the inverted sign bit.

Bit three is the overflow condition flag V. In general, when set it indicates
a signed overflow. At the Move instructions, it indicates a floating-point
NaN (Not a Number).

Bit four is the cache-mode flag M. Besides being set or cleared under pro-
gram control, it is also automatically cleared by a Frame instruction and by

any branch taken except a delayed branch. See instruction cache for details.

Bit five is the high global flag H. When H is set, denoting G0..G15 addres-
ses G16..G31 instead. Thus, the SP, UB or BCR may be addressed by deno-
ting G2, G3 or G4 respectively.

The H flag is effective only in the first cycle of the next instruction after
it was set; then it is cleared automatically.

Only the MOV or MOVI instruction issued as the next instructions are to be
used to copy the content of a local register or an immediate value to the
SP, the UB or the BCR. The MOV instruction may be used to copy the
content of the SP or the UB to a local register. (The content of BCR can-
not be copied to any register). With all other instructions, the result may be
invalid.

If the SP, UB or BCR is addressed as destination in user state (S = 0), the
condition flags are undefined, the destination remains unchanged and a trap

to Privilege Error occurs.

1-12

1.5.6 Status Information (continued)

Reserved Bits 7..6 are reserved for future use. They must always be zero.

FTE

FRM

Bits 12..8 are the floating-point trap enable flags (see floating-point instruc-

tions).

Bits 14..13 are the floating-point rounding modes (see floating-point instruc-

tions).

Bit 15 is the interrupt-lock flag L. When the L flag is one, all interrupt ex-
ceptions are inhibited. The state of the L flag is effective immediately af-
ter any instruction which changed it.

The L flag can be cleared or kept set in any or on return to any privilege
state (user or supervisor). Changing the L flag from zero to one is privi-
leged to supervisor or return from supervisor to supervisor state. A trap to
Privilege Error occurs if the L flag is set under program control from zero

to one in user or on return to user state.

1-13

1.5.6 Status Information (continued)

The following status information can be changed only internally or replaced by the

saved return value of the SR via a Return instruction:

T

ILC

FL

FP

Bit 16 is the trace-mode flag T. When both the T flag and the trace pen-
ding flag P are one, a trace exception occurs after every instruction except
after a Delayed Branch instruction.

Note: The T flag can only be changed in the saved return SR and is then

effective after execution of a Return instruction.

Bit 17 is the trace pending flag P. It is automatically set to one by all in-
structions except by the Return instruction, which restores the P flag from
bit 17 of the saved return SR.

Since for a Trace exception both the P and the T flag must be one, the P
flag determines whether a trace exception occurs (P = 1) or does not occur
(P = 0) immediately after a Return instruction which restored the T flag to
one.

Note: The P flag can only be changed in the saved SR. No program except
the trace exception handler should affect the saved P flag. The trace ex-
ception handler must clear the saved P flag to prevent a trace exception on

return, in order to avoid tracing the same instruction in an endless loop.
Bit 18 is the supervisor state flag S (see privilege states).

Bits 20 and 19 represent the instruction-length code ILC. It is updated by
instruction execution. The ILC holds (in general) the length of the last in-
struction: ILC values of one, two or three represent an instruction length of
one, two or three halfwords respectively. After a branch taken, the ILC is
invalid. The Return instruction clears the ILC.

Note: Since a Return instruction following an exception clears the ILC, a

program must not rely on the current value of the ILC.

Bits 24..21 represent the frame length FL. The FL holds the number of
usable local registers (maximum 16) assigned to the current stack frame.

FL = 0 is always interpreted as FL = 16.

Bits 31..25 represent the frame pointer FP. The least significant six bits of
the FP point to the beginning of the current stack frame in the local regi-
ster set, that is, they point to LO.

The FP contains bit 8..2 of the address at which the content of L0 would
be stored if pushed onto the memory part of the stack.

1-14
1.5.7 Privilege States

The architecture provides two privilege states, determined by the supervisor state
flag S: User state (S = 0) and supervisor state (S = 1).

The privilege state is used by the (external) memory management to control memory
and I/O accesses. The operating system kernel is executed in the higher privileged su-
pervisor state, thereby restricting access to all sensitive data to a highly reliable sy-
stem program. The following operations are also privileged to be executed only in the

supervisor or on return from supervisor to supervisor state:

- Copying an operand to the SP, UB or BCR
- Changing the interrupt-lock flag L from zero to one
- Returning through a Return instruction to supervisor state

Any illegal attempt causes a trap to Privilege Error.

The S flag is also saved in bit zero of the saved return PC by the Call, Trap and
Software instructions and by an exception. A Return instruction restores it from this
bit position to the S flag in bit position 18 of the SR (thereby overwriting the bit 18
returned from the saved return SR).

If a Return instruction attempts a return from user to supervisor state, a trap to
Privilege Error occurs (S = 1 is saved).

Returning from supervisor to user state is achieved by clearing the S flag in bit zero
of the saved return PC before return. Switching from user to supervisor state is only
possible by executing a Trap instruction or by exception processing through one of the

64 supervisor subprogram entries (see entry table).

Note: Since the Return instruction restores the PC first to enable the instruction
fetch to start immediately, the restored S flag must also be available immediately
to prevent any memory access with a false privilege state. The S flag is therefore
packed in bit zero of the saved return PC.

The state of the S flag is signalled at the corresponding pin in each memory or
1/0 cycle.

1-15

1.6 Register Data Types

31 0
IMSB 32 Bits LSé]
Bitstring
31 0

MSB High-Order 32 Bits
Low-Order 32 Bits LSB
Double-Word Bitstring
31 0
[MSB 32-Bit Magnitude LSB
Unsigned Integer

31 0
MSB High-Order 32-Bit Magnitude

Low-Order 32-Bit Magnitude LSB

Unsigned Double-Word Integer
31 0
|S|MSB 31-Bit Magnitude Lég]

Signed Integer, Two's Complement

3 0
S|MSB High-Order 31-Bit Magnitude

Low-Order 32-Bit Magnitude LSB

Signed Double-Word Integer, Two's Complement
31 0
[§JB—Bit Exponent IMSB 23-Bit Fraction LSE]
Single Precision Floating-Point Number
31 0
T T

Sl 11-Bit Exponent MSB High-Order 20-Bit Fraction

Low-Order 32-Bit Fraction LSB

Double Precision Floating-Point Number

S = sign bit, MSB = most significant bit, LSB = least significant bit

Register:

1-16
1.7 Memory Organization

The architecture provides a memory address space in the range of 0..232 -1
(0..4 294 967 295) 8-bit bytes. Memory is implied to be organized as 32-bit words.
Besides the memory address space, a separate 1/O address space is provided. The fol-

lowing memory data types are available:

Byte unsigned (unsigned 8-bit integer, bitstring or character)

1

Byte signed (signed 8-bit integer, two's complement)

Halfword unsigned (unsigned 16-bit integer or bitstring)

Halfword signed (signed 16-bit integer, two's complement)
Word (32-bit undedicated word)
Double-Word (64-bit undedicated double-word)

At I/O address space, only word and double-word data types are available.

Words and double-words must be located at word boundaries, that is, their most signi-
ficant byte must be located at an address whose two least significant bits are zero.
Halfwords must be located at halfword boundaries, their most significant byte being
located at an address whose least significant bit is zero. Bytes may be located at any
address.

The variable-length instructions are located as contiguous sequences of one, two or
three halfwords at halfword boundaries.

Memory accesses are pipelined to an implied depth of two addresses. Virtual memory
using demand paging may be implemented by an off-chip MMU (memory management
unit). A page fault signal from the MMU then causes a trap to the exception sub-
program Data Page Fault or Instruction Page Fault immediately after the fault-cau-
sing memory instruction is executed or the missing instruction is decoded respectively.
After loading the missing page from disk into memory and correcting a possibly up-

dated memory address, the fault causing instruction can then be repeated.

Note: All data is located high to low order at addresses ascending from low to high,
that is, the high order part of all data is located at the lower address. This scheme
should also be used for the addressing of bit arrays. Though the most significant bit
of a word is numbered as bit position 31 for convenience of use, it should be assigned
the bit address zero to maintain consistent bit addressing in ascending order through

word boundaries.

1-17
1.7 Memory Organization (continued)

The figure below shows the location of data and instructions in memory relative to a

binary address n = ...xxx00 (x = 0 or 1).
:31 0I
Byte n l Byte n + 1] Byte n + 2 Byte n + 3
|
Halfword n l Halfword n + 2
Byte n Byte n + 1 l Halfword n + 2
|
Halfword n l Byte n + 2 Byte n + 3
|
Word n
High-Order Word n of Double-Word
""""" Low-Order Word n + 4 of Double-Word |

1st Instruction Halfword 2nd Instruction Halfword (opt.)

3rd Instruction Halfword (opt.)

Preceding Instruction 1st Instruction Halfword

2nd Instruction Halfword (opt.) 3rd Instruction Halfword (opt.)

At all data types, the most significant bit is located at the higher and the least sig-

nificant bit at the lower bit position.

1-18
1.8 Stack

A runtime stack, called stack here, holds generations of local variables in last-in-
first-out order. A generation of local variables, called stack frame or activation re-
cord, is created upon subprogram entry and released upon subprogram return.

The runtime stack provided by the architecture is divided into a memory part and a
register part. The register part of the stack, implemented by a set of 64 local regi-
sters organized as a circular buffer, holds the most recent stack frame(s). The current
stack frame is always kept in the register part of the stack. The frame pointer FP
points to the beginning of the current stack frame (addressed as L0). The frame
length FL indicates the number of registers (maximum 16) assigned to the current
stack frame. The stack grows from low to high address. It is guarded by the upper
stack bound UB.

The stack is maintained as follows:

- A Call, Trap or Software instruction increments the FP and sets FL to six, thus
creating a new stack frame with a length of six registers (including the return
PC and the return SR).

- An exception increments the FP by the value of FL and then sets FL to two.

- A Frame instruction restructures a stack frame to include (optionally) passed
parameters by decrementing the FP and by resetting the FL, and restores a re-
serve of 10 local registers for the next subprogram call. If the required number
of registers + 10 do not fit in the register part of the stack, the contents of
the differential (required + 10 - available) number of local registers are pushed
onto the memory part of the stack. A trap to Frame Error occurs after the
push operation when the old value of the stack pointer SP exceeded the upper
stack bound UB.

- A Return instruction releases the current stack frame and restores the preceding
stack frame. If the restored stack frame is not fully contained in the register
part of the stack, the content of the missing part of the stack frame is pulled

from the memory part of the stack.

For more details see the descriptions of the specific instructions.

When the number of local registers required for a stack frame exceeds its maximum
length of 16 (in rare cases), a second runtime stack in memory may be used. This
second stack is also required to hold local record or array data.

The stack is used by routines in user or supervisor state, that is, supervisor stack
frames are appended to user stack frames, and thus, parameters can be passed be-
tween user and supervisor state. A small stack space must be reserved above UB. UB
can then be set to a higher value by the Frame Error handler to free stack space for

error handling.

1.8 Stack (continued)

The figure below shows
of the stack.

1-19

the creation and release of stack

Return from B Call B
PC := ret.PC B; PC := branch address;
SR := ret.SR B; ret.PC B := old PC;
-- returns preceding ret.SR B := o0ld SR;
stack frame FP := FP +
if stack frame contained ret.PC reg.code;
in local registers FL := 6;
then next instruction; -- ret.PC reg.code = 9
else pull contents of
differential words from
memory part of stack;
parameter <-FP parameter
for A for A
ret.PC for A ret.PC for A
ret.SR for A ret.SR for A
actual number
reserved frame of variables frame
for A in frame A A
maximum parameter
number of for frame B
variables ret.PC for B |[<-FP
in frame ret.SR for B
A reserved for
max. number frame
FL = 13 <-FP+FL of variables B
in frame B
FL = 6 <-FP+FL
before Call and after Call

after Return

Frame in B

FP := FP - source reg.code;
FL := dest. reg.code;
if available registers »>=

(required + 10) registers

then next instruction;
else push contents of

differential number of

registers to memory
part of stack;
-- source reg.code = 2
-- dest. reg.code = 11

parameter

actual number
of variables

in frame A

parameter <-FP

for frame B

reserved
for
maximum B
number of
variables
in frame

B

FL = 11

after Frame

frames in the register part

frame

<-FP+FL

1.8 Stack (continued)

overlap modulo 64

before Frame Instruction

register part
of the stack

A and B

memory part
of the stack

1-20

words -> stack <-SP
A to be -> space |
pushed -> I required
pushed number
of words not
FP-> related to FP->
stack frame
additional
B I space I
| required l
before Return Instruction
| |
FP—)r_ frame _1 <- words FP->
A words <- to be
required <- pulled
<-SP
pulled number
of words
related to
stack frame
words
B to be
overwritten|

after Frame Instruction

register part
of the stack

additional
space
available

memory part
of the stack

space
appended

after Return Instruction

frame
words
pulled

—_— — — 4

stack
space
freed

-——
I
|
I
L

<-SP

1-21
1.9 Instruction Cache

The instruction cache holds a total of up to 128 bytes (32 unstructured 32-bit words
of instructions). It is implemented as a circular buffer which is guarded by a look-
the look-back counter the lowest address of the instruction words available in the
cache. The cache-mode flag M is used to optimize special cases in loops (see details
below). The cache can be regarded as a temporary local window into the instruction
sequence, moving along with instruction execution and being halted by the execution
of a program loop.

Its function is as follows:

The prefetch control loads unstructured 32-bit instruction words (without regard to
instruction boundaries) from memory into the cache. The load operation is pipelined to
a depth of two stages (see memory instructions for details of the load pipeline). The
look-ahead counter is incremented by four at each prefetch cycle. It always contains
the address of the last instruction word for which an address bus cycle is initiated,
regardless of whether the addressed instruction word is in the load pipeline or already
loaded into the instruction cache.

The prefetched instruction word is placed in the cache word location addressed by
bits 6..2 of the look-ahead counter. The look-back counter remains unchanged during
prefetch unless the cache word location it addresses with its bits 6..2 is overwritten
by a prefetched instruction word. In this case, it is incremented by four to point to
the then lowest-addressed usable instruction word in the cache. Since the cache is
implemented as a circular buffer, the cache word addresses derived from bits 6..2 of

the look-ahead and look-back counter wrap around modulo 32.
The prefetch is halted:

- When eight words are prefetched, that is, eight words are available (including
those pending in the load pipeline) in the prefetch sequence succeeding the
instruction word addressed by the program counter PC through the instruction
word addressed by the look-ahead counter. Prefetch is resumed when the PC is
advanced by instruction execution.

- In the cycle preceding the execution cycle of a memory instruction or any
potentially branch-causing instruction (regardless of whether the branch is taken)
except a forward Branch or Delayed Branch instruction with an instruction
length of one halfword and a branch target contained in the cache. Halting the
prefetch in these cases avoids filling the load pipeline with demands for lower
priority (compared to data) or potentially unnecessary instruction words. The pre-
fetch is also halted during the execution cycle of any instruction accessing

memory or [/0.

1 - 22
1.9 Instruction Cache (continued)

- When a Page Fault is signalled on the attempted fetch of an instruction word.
In this case, the look-ahead counter holds the address of the fault-causing

instruction word and an internal Page-Fault flag is set. The trap to Page Fault

stage prior to execution.

The cache is read in the decode cycle by using bits 6..1 of the PC as an address to
the first halfword of the instruction presently being decoded. The instruction decode
needs and uses only the number (1, 2 or 3) of instruction halfwords defined by the
instruction format. Since only the bits 6..1 of the PC are used for addressing, the
halfword addresses wrap around modulo 64. Idle wait cycles are inserted when the
instruction is not or not fully available in the cache.

At an explicit Branch or Delayed Branch instruction (except when placed as delay
instruction) with an instruction length of one halfword, the location of the branch
target is checked. The branch target is treated as being in the cache when the target
address of a backward branch is not lower than the address in the look-back counter
and the target address of a forward branch is not higher than two words above the
address in the look-ahead counter. That is, the two instruction words succeeding the
instruction word addressed by the content of the look-ahead counter are treated by a
forward branch as being in the cache. Their actual fetch overlaps in most cases with
the execution of the branch instruction and thus, no cycles are wasted. When the
branch target is in the cache, the look-back counter, the look-ahead counter and the
internal Page Fault flag remain unchanged.

When a branch is taken by a Delayed Branch instruction with an instruction length of
one halfword to a forward branch target not in the cache and the cache mode flag M
is enabled (1), the look-back counter, the look-ahead counter and the internal Page
Fault flag remain unchanged. Wait cycles are then inserted until the ongoing prefetch
has loaded the branch target instruction into the cache. A Page Fault flag set or a
Page Fault signal causes an immediate trap to Instruction Page Fault in this case.
Any other branch taken flushes the cache by also placing the branch address in the
look-back and the look-ahead counter; the internal Page Fault flag is cleared. Pre-
fetch then starts immediately at the branch address. Instruction decoding waits until
the branch target instruction is fully available in the cache.
The cache mode flag M (bit four of the SR) can be set or cleared by logical instruc-
tions. It is automatically cleared by a Frame instruction and by any branch taken
except a branch caused by a Delayed Branch or Return instruction; a Delayed Branch
instruction leaves the M flag unchanged and a Return instruction restores the M flag
from the saved status register SR.

1 -23
1.9 Instruction Cache (continued)

Note: The instruction cache is transparent to programs. A program executes correctly
even if it ignores the cache, whereby it is assumed that the instruction code is not
modified in the local range contained in the cache.

Since up to eight instruction words can be loaded into the cache by the prefetch,
only 24 instruction words are left to be contained in a program loop. Thus, a program
loop can have a maximum length of 96 or 94 bytes including the branch instruction
closing the loop, depending on the even or odd halfword address location of the first
instruction of the loop respectively.

A forward Branch or Delayed Branch instruction with an instruction length of one
halfword into up to two instruction words succeeding the word addressed by the look-
ahead counter treats the branch target as being in the cache and does not flush the
cache. Thus, three or four instruction halfwords, depending on the odd or even half-
word address location of the branch instruction respectively, can always be skipped
without flushing the cache.

Enabling the cache-mode flag M is only required when a program loop to be contained
in the cache contains a forward branch to a branch target in the program loop and
more than three (or four, see above) instruction halfwords are to be skipped. In this
case, the enabled M flag in combination with a Delayed Branch instruction with an
instruction length of one halfword inhibits flushing the cache when the branch target
is not yet prefetched.

Since a single-word memory instruction halts the prefetch for two cycles, any
sequence of memory instructions, even with interspersed one-cycle non-memory
instructions, halts the prefetch during its execution. Thus, alternating between instruc-
tion and data memory pages is avoided. If the number of instruction halfwords
required by such a sequence is not guaranteed to be in the cache at the beginning of
the sequence, a Fetch instruction enforcing the prefetch of the sequence may be
used. A Fetch instruction may also be used preceding a branch into a program loop;
thus, flushing the cache by the first branch repeating the loop can be avoided.

A branch taken caused by a Branch or Delayed Branch instruction with an instruction
length of two halfwords always flushes the instruction cache, even if the branch tar-
get is in the cache. Thus, branches can be forced to bypass the cache, thereby redu-
cing the cache to a prefetch buffer. This reduced function can be used for testing.
The last nine words of a memory block containing instructions must not contain any

instruction to be executed, otherwise the prefetch could overrun the memory limit.

2 -1
2 Instructions General
2.1 Instruction Notation

In the following instruction-set presentation, an informal description of an instruction
is followed by a formal description in the form:

Format Notation Operation

Format denotes the instruction format.

Notation gives the assembler notation of the instruction.

Operation describes the operation in a Pascal-like notation with the following symbols:

Ls denotes any of the local registers L0..L15 used as source register or as source
operand. At memory Load instructions, Ls denotes the load destination register.

Ld denotes any of the local registers L0..L15 used as destination register or as
destination operand.

Rs denotes any of the local registers L0..L15 or any of the global registers G0..G15
used as source register or as source operand. At memory Load, see Ls.

Rd denotes any of the local registers L0..L15 or any of the global registers G0..G15
used as destination register or as destination operand.

Lsf, Ldf, Rsf and Rdf denote the register or operand following after (with a register
address one higher than) Ls, Ld, Rs and Rd respectively.

imm, const, dis, lim, rel, adr and n denote immediate operands (constants) of various
formats and ranges.

Operand(x) denotes a single bit at the bit position x of an operand.

Example: Ld(31) denotes bit 31 of Ld.

Operand(x..y) denotes bits x through y of an operand.
Example: Ls(4..0) denotes bits 4 through 0 of Ls.

Expression~ denotes an operand at a location addressed by the value of the
expression. Depending on the context, the expression addresses a memory
location or a local register.

Example: Ld~ denotes a memory operand whose memory address is the operand
Ld. (FP + FL)" denotes a local register operand whose register address is
FP + FL.

:= signifies the assignment symbol, read as "is replaced by".

// signifies the concatenation symbol. It denotes concatenation of two operand
words to a double-word operand or concatenation of bits and bitstrings.

Example: Ld//Ldf denotes a double-word operand,
16 zeros//imml denotes zero expanding of an immediate halfword.

=, /=, > and < denote the equal, unequal, greater than and less than relations.
Example: The relation Ld = 0 evaluates to one if Ld is equal to zero, otherwise

it evaluates to zero.

2.2 Instruction Execution

At instruction execution, all bits of the operands participate in the operations, except
at the Shift and Rotate instructions (whereat only the 5 least significant bits of the
source operand are used) and except at the byte and halfword Store instructions.
Instructions are executed by a two-stage pipeline. In the first stage, the instruction is
fetched from the instruction cache and decoded. In the second stage, the instruction
is executed while the next instruction in the first stage is already decoded.

At register instructions executing in one or two cycles, the corresponding source and
destination operand words are read from their registers and evaluated in each cycle in
which they are used. Then the result word is placed in the corresponding destination
register in the same cycle. Thus, at all single-word register instructions executing in
one cycle, the source operand register and the destination operand register may
coincide without changing the effect of the instruction. At all other instructions, the
effect of a register coincidence depends on execution order and must be examined
specifically for each such instruction.

The content of a source register remains unchanged unless it is used coincidentally as
a destination register (except at memory Load instructions).

Some instructions set or clear condition flags according to the result and special
conditions occuring during their execution. The conditions may be expressed by single
bits, relations or logical combinations of these. If a condition evaluates to one (true),
the corresponding condition flag is set to one, if it evaluates to zero (false), the
corresponding condition flag is cleared to zero. Unless specified otherwise, a trap to
Range Error occurs after the flags and the destination are updated.

All instructions may use the result and any flags updated by the preceding instruction.
A time penalty occurs only if the result of a memory Load or Exchange instruction is
not yet available when needed as destination or source operand. In this case one or
more (depending on the memory access time) idle wait cycles are enforced by a
hardware interlock.

An instruction must not use any local register of the register sequence beginning with
LO beyond the number of usable registers specified by the current value of the frame
length FL (FL = 0 is interpreted as FL = 16). That is, the value of the corresponding
register code (O..IS).addressing a local register must be lower than the interpreted
value of the FL (except with a Call or Frame instruction or some restricted cases).
Otherwise, an exception could overwrite the contents of such a register or the
beginning of the register part of the stack at the SP could be overwritten without
any warning when a result is placed in such a register.

Double-word instructions denote the high-order word (at the lower address). The low-
order word adjacently following it (at the higher address) is implied.

"Old" denotes the state before the execution of an instruction.

2.3 Instruction Formats

Instructions have a length of one, two or three halfwords and must be located on

halfword boundaries. The following formats are provided:

Format Configuration
15 8 7 4 3 0
Ls-code encodes LO..L15 for Ls
LL l OP-code lLd—codelLs—codel Ld-code encodes L0..L15 for Ld
15 987 4 3 0
s = 0: Rs-code encodes GO0..G15 for Rs
LR l 0p-cade lled—codele—codel s = 1: Rs-code encodes L0..L15 for Rs
Ld-code encodes LO..L15 for Ld
15 10 9 8 7 4 3 0
s = 0: Rs-code encodes GO..G15 for Rs
RR OP-code ld|isd-code1Rs-codeI s = 1: Rs-code encodes L0..L15 for Rs
d = 0: Rd-code encodes G0..G15 for Rd
d = 1: Rd-code encodes LO..L15 for Rd
15 987 4 3 0
Ld-code encodes LO..L15 for Ld
Ln l Op-code l“lm‘“del n | n: Bit 8//bits 3..0 encode n = 0..31
15 10 987 43 0
l I d = 0: Rd-code encodes G0..G15 for Rd
Rn I OP—code. [dlnLRd-code n d = 1: Rd-code encodes L0..L15 for Rd
n: Bit 8//bits 3..0 encode n = 0..31
15 8 7 0
PCadr l OP-code [adr-byte | adr = 24 ones's//adr-byte(7..2)//00
15 876 10
S: sign bit of rel
PCrel , OP-code IOI low-rel IS‘ rel = 25 S//low-rel//0
range -128..126
15 876 10
) S: sign bit of rel
PCrel OP-code l}J high-rel rel = 9 S//high-rel//low-rel//0

low-rel]S range -8 388 608..8 388 606

2.3 Instruction Formats (continued)

Format

LRconst

RRconst

RRdis

Rimm

RR1lim

n

n

O naQnn

o

= 0: Rs-code encodes GO..G15 for Rs

= 1: Rs-ccde encedes LO..L15 for Rs
Ld-code encodes L0O..L15 for Ld
Sign bit of const

= 0: const = 18 S//const1

range -16 384..16 383
= 1: const = 2 S//const1//const2
range -1 073 741 824..1 073 741 823

= 0: Rs-code encodes GO..G15 for Rs

= 1: Rs-code encodes LO..L15 for Rs

= 0: Rd-code encodes GO0..G15 for Rd

= 1: Rd-code encodes LO..L15 for R4
Sign bit of const

= 0: const = 18 S//const1

range -16 384..16 383
= 1: const = 2 S//const1//const2
range -1 073 741 824..1 073 741 823

Configuration
15 14 987 43 0
OP-code !s!Ld—code'Rs—code
eléI const1
Lo constz . J
15 14 10 9 8 7 4 3 0
OP-code Id]sIRd-codele-code
e S| const1
L_ - - - - C?nftg ______ 1
15 14 10 9 8 7 4 3 0
OP-code ldlsIRd—codele—code
elS]D Dl dis1
C w2 ;
15 10 9 8 7 43 0
OP-code |d|n|Rd-codel n
imm1
SRR =R
15 10 9 8 7 4 3 0
OP-code !d!s[Rd—code!Rs—code
e]x X xl lim1
L lim2 |

s = 0: Rs-code encodes GO0..G15 for Rs
s = 1: Rs-code encodes LO..L15 for Rs
d = 0: Rd-code encodes GO0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd
S: Sign bit of dis
e = 0: dis = 20 S//dis1
range -4 096..4 095
e = 1: dis = 4 S//dis1//dis2
range -268 435 456..268 435 455
DD: D-code, D13..D12 encode data
types at memory instructions
d = 0: Rd-code encodes GO..G15 for Rd
d = 1: Rd-code encodes L0O..L15 for Rd
n: Bit 8//bits 3..0 encode n = 0..31
see table immediate values for
encoding of imm
s = 0: Rs-code encodes GO..G15 for Rs
s = 1: Rs-code encodes LO..L15 for Rs
d = 0: Rd-code encodes GO0..G15 for Rd
d = 1: Rd-code encodes L0..L15 for Rd
XXX X-code, X14..X12 encode Index
instructions
e = 0: lim = 20 zeros//liml
range 0..4 095
e = 1: lim = 4 zeros//lim1//1lim2

range 0..286 435 455

2.3.1 Table of Immediate Values

n immediate value imm
0..16 0..16 -- at CMPBI, n = 0 encodes ANYBZ
at ADDI and ADDSI n = 0 encodes CZ
17 imm1//imm2 -- range = 0..232.1 or -231 231
18 16 zeros//imml -- range = 0..65 535
19 16 ones//imml -- range = -65 536..-1
20 32 -- bit 5 = 1, all other bits = 0
21 64 -- bit 6 = 1, all other bits = 0
22 128 -- bit 7 = 1, all other bits = 0
23 231 - bit 31 = 1, all other bits = 0
24 -8
25 -7
26 -6
27 -5
28 -4
29 -3
30 -2
31 231y at CMPBI and ANDNI
-- bit 31 = 0, all other bits = 1
31 -1 at all other instructions using imm
Note: 231 provides clear, set and invert of the floating-point sign bit at ANDNI, ORI

and XORI respectively.
2314 provides a test for floating-point zero at CMPBI and extraction of the sign bit
at ANDNI.

AT

s £ A
€€ UNMIDI I10r AN

w

2.3.2 Table of Instruction Codes

VL XXdVEL ¥e | 196 | 916 | NNG | NE | IHG | SE | ONG | O4 | ENG | A | ANE | Ad
ATTVO'TTIVD |FWVNA | ¥EQ | 198A | @18 | NNEA | N | IHEQ | ISEQ | ONEQ | DHG | INEA | 3EA | ANEA | AdD
a-ais d°MIS ¥°aLs q°MLS d-aat d-Mat ¥°aa1 §°MaT
00 | X& |QIADA | IADJ |ANAWOJ| NAWDA | QWO | dWOd | GAIGA | AIG4 | Q10Wd | TOWI | QENSI | €NSd | 4AQVd | QQvd
TOH HDLAJ 'YAVIES ' XXLAS STON 0T0R
ITvS IHS TuVS TNHS
MHOX 'S/N" XXLS VOI/Q0I/V/a"XX1S §/N"XxQ1 V0I/00I/¥/a"Xxa1
08 [zas3L| I0TVS s | ams | 10THS wvs | awvs | 1auvs WS | auHs | Iaums
THOX 10 INGNY T8aWD
1saav 1aav TAOW 1dWD
$OaN 9aN any oaav
sans ans 10N oans
0X 40 NaNV gdno
saav aav AOW awo
SWOS WOS HASVH ZXHX * XWX

SAIQ nAIa 134 'AAON dON ‘Z¥HD ‘¥HD
a a o) g v 6 8 L 9 s v € z ' 0

8" "Il S3TE 8pPOO-40

Z1° "Gl S3Td 3pOd-40

I

® o «« M O A Mm

n o

N M =

2.4 Entry Table

The table below shows the addresses of the first

instruction of the

subprogram

associated with each Software instruction, Trap instruction and exception.

Address (Hex)
FFFF FEO00
FFFF FE10
FFFF FE20
FFFF FE30
FFFF FE40
FFFF FE50
FFFF FE60
FFFF FE70
FFFF FE80
FFFF FE90
FFFF FEAOQ
FFFF FEBO
FFFF FECO
FFFF FEDO
FFFF FEEO
FFFF FEF0

FFFF FF00
FFFF FF04

FFFF FFEO
FFFF FFE4
FFFF FFE8
FFFF FFEC
FFFF FFFO0
FFFF FFF4
FFFF FFF8
FFFF FFFC

Note:

Entry
FADD
FADDD
FSUB
FSUBD
FMUL
FMULD
FDIV
FDIVD
FCMP
FCMPD
FCMPU
FCMPUD
FCVT
FCVTD
EX

DO

TRAP -> 0
TRAP -> 1

TRAP -> 56
TRAP -> 57
TRAP -> 58

Instruction Page Fault
Trace exception
Interrupt exception

-- lowest priority

Reserved for interrupt handler instruction(s)

TRAP -> 60
TRAP -> 61
TRAP -> 62
TRAP -> 63

Data Page Fault
Reset

Range, Pointer, Frame and Privilege Error

-- highest priority

-- error entry for instruction code of all ones

Spacing of the entries for the Software instructions FADD..DO is 16 bytes. The

associated subprogram head is intended to be placed directly at the corresponding

entry.

Spacing of the entries for the Trap instructions and exceptions is four bytes. These

entries are

intended to each contain an

instruction branching to the associated

subprogram. The entries for the TRAPxx instructions are the same as for TRAP. The

exception entries

are ordered by priority.

Application Note: The Trap entries 32..63 are reserved for system software.

2.5 Instruction Timing
The following execution times are given in clock cycles.

All instructions not shown below: 1 cycle
Move Double-Word: 2 cycles
Shift Double-Word: 2 cycles
Test Leading Zeros: 2 cycles
Multiply Word and Multiply Double-Word signed: max. 24 cycles
average (rounded up to nearest integer): 17 cycles
Multiply Double-Word unsigned: max. 34 cycles
average (rounded up to nearest integer): 17 cycles
Divide unsigned and signed: 36 cycles
Branch instructions when branch not taken : 1 cycle
when branch taken and target in on-chip cache : 2 cycles
when branch taken and target in memory : 2 + memory read latency cycles
(see 2-9)
Delayed Branch instructions when branch not taken : 1 cycle
when branch taken and target in on-chip cache : 1 cycle
when branch taken and target in memory : 1 + memory read latency cycles
exceeding (delay instruction cycles - 1) cycles
Call and Trap instructions when branch not taken: 1 cycle
when branch taken: 2 + memory read latency cycles
Software instructions: 6 + memory read latency cycles exceeding 4 cycles
Frame when not pushing words into the stack : 3 cycles
additionally when pushing n words into the stack: memory write latency cycles
+ n cycles
-- fast page mode storing a word in each cycle is implied
-- write latency cycles = cycles elapsed until write access cycle of first word
stored (minimum = 1 at a non-RAS access and no pipeline congestion)
Return:
4 + memory read latency cycles exceeding 2 cycles
additionally when pulling n words out of the stack: memory RAS latency cycles
+ n cycles
(RAS latency applies only at n > 2, otherwise RAS latency is always 0)
-- fast page mode reading a word in each cycle is implied
-- RAS latency = RAS precharge cycles + RAS to CAS delay cycles

2.5 Instruction Timing (continued)

Memory word instructions, non-stack address mode:

Non-RAS access or Page Fault bit (in BCR) disabled: 1 cycle

RAS access and Page Fault bit enabled: 1 + RAS latency cycles
Memory word instructions, stack address mode:

Register access: 3 cycles

Non-RAS memory access or Page Fault bit disabled: 3 cycles

RAS access and Page Fault bit enabled: 3 + RAS latency cycles
Memory double word instructions:

Non-RAS access or Page Fault bit disabled: 2 cycles

RAS access and Page Fault bit enabled: 2 + RAS latency cycles
For timing calculations, double-word memory instructions are treated like a sequence
of two single-word memory instructions.
Instruction execution proceeds after the execution of a Load or Exchange instruction
until the data requested is needed (that is, the register into which the data is to be
loaded is addressed) by a further instruction.
The cycles executed between the memory instruction cycle requesting the data and
the first cycle at which the data are available are called read latency cycles. These
read latency cycles can be filled with instructions which do not need the requested
data. When, after the execution of these optional fill instruction cycles, the data is
still not available in the cycle needing it, idle wait cycles are inserted until the data
is available. The idle wait cycles are inserted transparently to the program by an on-
chip hardware interlock.
Idle wait cycles are also transparently inserted when a memory instruction has to
wait for execution because the two-stage address pipeline is full.
At a non-RAS memory or an I/O access, the read latency is:

read latency = address setup cycles + access cycles
At a RAS memory access, the read latency is:

read latency = RAS precharge cycles + RAS to CAS delay cycles

+ access cvcles

Additional cycles are also inserted and add to the latency when the address pipeline
is congested, these cycles must then also be taken into calculation.
A switch from a memory or I/O store operation to an immediately succeeding load
operation or a bus master switch from a preceding load or store operation to an
immediately succeeding load operation inserts one additional bus cycle.
A switch from a memory or I/O load operation, with or without a bus master switch,

to an immediately succeeding store operation inserts two additional wait cycles.

3-1
3 Instruction Set
3.1 Memory Instructions

The memory instructions load data from memory in a register Rs (or a register pair
Rs//Rsf) or store data from Rs (or Rs//Rsf) to memory using the data types byte
unsigned/signed, halfword unsigned/signed, word or double-word, or exchange a data
word. Since I/O devices are also addressed by memory instructions, "memory" stands
here interchangeably also for I/O unless memory or I/O address space is specifically
denoted.

The memory address is either specified by the operand Rd or Ld, by the sum Rd plus
a signed displacement or by the displacement alone, depending on the address mode.
Memory accesses to words and double-words ignore bits one and zero of the address,
memory accesses to halfwords ignore bit zero of the address, (since these operands
are located at word or halfword boundaries respectively, these address bits are
redundant).

If the content of any register Rd except SR is zero, the memory is not accessed and
a trap to Pointer Error occurs (see exceptions). Thus, uninitialized pointers are auto-
matically checked.

Load, Store and Exchange instructions are pipelined to a total depth of two word
entries for Load, Store and Exchange, thus, a double-word Load or a double-word
Store instruction can be executed without halting the CPU in a wait state (The ad-
dress pipeline provides a depth of two addresses common to load and store).
Double-word memory instructions enter two separate word entries into the pipeline
and start two independent memory cycles. The first memory cycle, loading or storing
the high-order word, uses the address specified by the address mode, the second cycle
uses this address incremented by four and also places it on the address bus.

A Page Fault signal from the memory control circuits (off chip) causes a trap to the
Data Page Fault routine.

Since a double-word instruction starts separate memory cycles, a Page Fault can be
signalled for the first or second word in memory independently, enabling the handling
of a Page Fault caused by a double-word instruction where the second word is in a
non-resident page.

Accessing data in the same DRAM page by any number of succeeding memory cycles
is performed in page mode, automatically directed by a control signal from the CPU.

Memory instructions leave all condition flags unchanged.

3.1.1 Address Modes

Register Address Mode:
Notation: LDxx.R, STxx.R -- xx: word or double word data type

The content of the destination register Ld is used as an address into memory address

space.

Postincrement Address Mode:
Notation: LDxx.P, STxx.P -- xx: word or double-word data type

The content of the destination register Ld is used as an address into memory address
space, then Ld is incremented according to the specified data size of a word or
double-word memory instruction by 4 or 8 respectively, regardless of any exception
occuring. In the case of a double-word data type, Ld is incremented by 8 at the first

memory cycle.

Displacement Address Mode:
Notation: LDxx.D, STxx.D -- xx: any data type

The sum of the contents of the destination register Rd plus a signed displacement dis
is used as an address into memory address space.

Rd may denote any register except the SR; Rd not denoting the SR differentiates this
mode from the absolute address mode.

In the case of all data types except byte, bit zero of dis is treated as zero for the

calculation of Rd + dis.

Note: Specification of the PC for Rd provides addressing relative to the address of

the first byte after the memory instruction.

Absolute Address Mode:
Notation: LDxx.A, STxx.A -- xx: any data type

The displacement dis is used as an address into memory address space. Rd must
denote the SR to differentiate this mode from the displacement address mode; the
content of the SR is not used.

In the case of all data types except byte, address bit zero is supplied as zero.

Note: The displacement provides absolute addressing at the beginning and the end

(ROM part) of the memory.

1/0 Displacement Address Mode:
Notation: LDxx.IOD, STxx.IOD -- xx: word or double-word data type

The sum of the contents of the destination register Rd plus a signed displacement dis
is used as an a .
Rd may denote any register except the SR; Rd not denoting the SR differentiates this
mode from the I/O absolute address mode.

Bits one and zero of dis are treated as zero for the calculation of Rd + dis.
Execution of a memory instruction with 1/O displacement address mode does not dis-
rupt any page mode sequence and cannot cause any Data Page Fault; an erroneous

Page Fault signal is ignored.

Note: The 1/O displacement address mode provides dynamic addressing of peripheral
devices.

When at a load instruction only a byte or halfword is placed on the (lower part) of
the data bus, the higher-order bits are undefined and must be masked out before the

loaded operand is used further.

1/O Absolute Address Mode:
Notation: LDxx.IOA, STxx.IOA -- xx: word or double-word data type

The displacement dis is used as an address into 1/O address space.

Rd must denote the SR to differentiate this mode from the 1/O displacement address
mode; the content of the SR is not used.

Address bits one and zero are supplied as zero.

Execution of a memory instruction with I/O address mode does not disrupt any page
mode sequence and cannot cause any Data Page Fault; an erroneous Page Fault signal

is ignored.

Note: The 1/O absolute address mode provides code efficient absolute addressing of
peripheral devices and allows simple decoding of 1/0 addresses.

When at load instructions only a byte or a halfword is placed on the (lower part) of
the data bus, the higher-order bits are undefined and must be masked out before the

loaded operand is used further.

Application Note: For all 1/0 address modes, I/O addresses with bit 31 = 1 are reser-

ved for hardware extensions and system modules.

Next Address Mode:
Notation: LDxx.N, STxx.N -- xx: any data type

The content of the destination register Rd is used as an address into memory address
space, then Rd is incremented by the signed displacement dis regardless of any excep-
tion occuring. At a double-word data type, Rd is incremented at the
cycle.

Rd must not denote the PC or the SR.

In the case of all data types except byte, bit zero of dis is treated as zero for the

calculation of Rd + dis.

Stack Address Mode:
Notation: LDW.S, STW.S -- only word data type

The content of the destination register Rd is used as stack address, then Rd is in-
cremented by dis regardless of any exception occurred.

A stack address addresses memory address space if it is lower than the stack pointer
SP; otherwise bits 7..2 of it (higher bits are ignored) address a register in the register
part of the stack absolutely (not relative to the frame pointer FP).

Bits one and zero of dis are treated as zero for the calculation of Rd + dis.

Rd must not denote the PC or the SR.

Note: The stack address mode must be used to address an operand in the stack re-
gardless of its present location either in the memory part or in the register part of
the stack. Rd may be set by the Set Stack Address instruction.

Address Mode Encoding:
The encoding of the displacement and absolute address mode types of memory instruc-
tions is shown in the following table:

LDxx.D/A/IOD/IOA STxx.D/A/IOD/IOA

Rd does not Rd Rd does not Rd

denote denotes denote denotes

D-code dis(1) dis(0) SR SR SR SR

0 X X LDBS.D LDBS.A STBS.D STBS.A
1 X X LDBU.D LDBU.A STBU.D STBU.A
2 X 0 LDHU.D LDHU.A STHU.D STHU.A
2 X 1 LDHS.D LDHS.A STHS.D STHS.A
3 0 0 LDW.D LDW.A STW.D STW.A
3 0 1 LDD.D LDD.A STD.D STD.A
3 1 0 LDW.IOD LDW.IOA STW.IOD STW.IOA
3 1 1 LDD.IOD LDD.IOA STD.IOD STD.IOA

The encoding of the Exchange instruction XCHW and of the next and stack address

mode types of memory instructions is shown in the following table:

With the instructions below, Rd must not denote the PC or the SR

D-code dis(1) dis(0) LDxx.N/S STxx.N/S, XCHW

0 X X LDBS.N STBS.N

1 X X LDBU.N STBU.N

2 X 0 LDHU.N STHU.N

2 X 1 LDHS.N STHS.N

3 0 0 LDW.N STW.N

3 0 1 LDD.N STD.N

3 1 0 Reserved XCHW

3 1 1 LDW.S STW.S

3.1.2 Load Instructions

The Load instructions transfer data from the addressed memory location into a regi-

ster Rs or a register pair Rs//Rsf.

words are read from memory and transferred

nemaory

3
o
=3
]
=
()
o
Q.
-
=]
ot
o
o)

respectively.

In the case of byte and halfword data types, one word is read from memory, the byte
or halfword addressed by bits one and zero or bit one of the memory address
respectively is extracted, right adjusted, expanded to 32 bits and placed in Rs.
Unsigned bytes and halfwords are expanded by leading zeros, signed bytes and
halfwords are expanded by leading sign bits.

Execution of a Load instruction enters the register address of Rs, memory address
bits one and zero and a code for the data type into the load pipeline, places the
memory address onto the address bus and starts a memory cycle. A double-word Load
instruction enters the register address of Rsf and the same control information into
the load pipeline as a second entry, places the memory address incremented by four
onto the address bus and starts a second memory cycle.

After execution of a Load instruction, the next instructions are executed without wai-
ting for the data to be loaded. A wait is enforced only if an instruction uses a regi-
ster whose register address is still in the load pipeline. The data read from memory
is placed in the register whose register address is at the head of the load pipeline,
its pipeline entry is then deleted.

Rs must not denote the PC or the SR; these registers cannot be loaded from
memory.

Rs and Rsf must also not denote the same register as Rd (or Ld), otherwise the
handling of a Data Page Fault could incorrectly use Rd (or Ld) already overwritten by

the fault-causing memory cycle.

3.1.2 Load Instructions (continued)
Format Notation

LR LDxx.R, Ld, Rs;

LR LDxx.P, Ld, Rs;

RRdis LDxx.D, Rd, Rs, dis;
RRdis LDxx.A, 0, Rs, dis;
RRdis LDxx.IOD, Rd, Rs, dis;
RRdis LDxx.IOA, 0, Rs, dis;
RRdis LDxx.N, Rd, Rs, dis;
RRdis LDxx.S, Rd, Rs, dis;

Operation Data Type xx
Rs := Ld7; W,D
[Rsf := (Ld + 4)7;]

-- register address mode

Rs := Ld™; Ld := Ld + size; W,D

[Rsf := (old Ld + 4)7;]
-- postincrement address mode

Rs := (Rd + dis)";
[Rsf := (Rd + dis + 4)7;]
-- displacement address mode

BU,BS,HU,HS,W,D

Rs := dis~;
[Rsf := (dis + 4)7;]
-- absolute address mode

BU,BS,HU,HS,W,D

Rs := (Rd + dis)"; w,D
[Rsf := (Rd + dis + 4)7;]

-- 1I/0 displacement address mode

Rs := dis~; W,D

[Rsf := (dis + 4)7;]
-- I/O absolute address mode

Rs := Rd™; Rd := Rd + dis;
[Rsf := (old Rd + 4)7;]
-- next address mode

BU,BS,HU,HS,W,D

Rs := Rd™; Rd := Rd + dis;
-- stack address mode

Size is 1, 2, 4 or 8 according to a data size of byte, halfword, word or double-word

respectively.

The expressions in brackets are only executed at double-word data types.

Data Type xx is with:
BU: byte unsigned;
BS: byte signed;

HU: halfword unsigned;
HS: halfword signed;

W: word;
D: double-word;

3.1.3 Store Instructions

The Store instructions transfer data from the register Rs or the register pair Rs//Rsf
to the addressed memory location.
In the case of data type word, one word, in the case of data type double-word, two

bus to be stored in the memory.

In the case of byte and halfword data types, the low-order byte or halfword is placed
onto the data bus at the byte or halfword position addressed by bits one and zero or
bit one of the memory address respectively; it is implied to be merged (via byte
write enable) with the other data in the same memory word.

In the case of unsigned/signed byte and unsigned/signed halfword data types, any con-
tent of Rs exceeding the value range of the specified data type causes a trap to
Range Error. The byte or halfword is stored regardless of a Range Error.

If Rs denotes the SR, zero is stored regardless of the content of SR (or of SR//G2 at
double-word).

Execution of a Store instruction enters the contents of Rs, memory address bits one
and zero and a code for the data type into the store pipeline, places the memory ad-
dress onto the address bus and starts a memory cycle. A double-word Store instruc-
tion enters the contents of Rsf and the same control information into the store pipe-
line as a second entry, places the memory address incremented by four onto the ad-
dress bus and starts a second memory cycle.

After execution of a Store instruction, the next instructions are executed without
waiting for the store memory cycle to finish. The data at the head of the store
pipeline is put on the data bus on demand from the on-chip memory control logic
and its pipeline entry is deleted.

When Rsf denotes the same register as Rd (or Ld) at double-word instructions with
next address or postincrement address mode, the incremented content of Rsf is stored
in the second memory cycle; in all other cases, the unchanged content of Rs or Rsf
is stored.

3.1.3 Store Instructions (continued)

Format Notation

LR STxx.R, Ld, Rs;

LR STxx.P, Ld, Rs;

RRdis STxx.D, Rd, Rs, dis;
RRdis STxx.A, 0, Rs, dis;
RRdis STxx.IOD, Rd, Rs, dis;
RRdis STxx.IOA, 0, Rs, dis;
RRdis Stxx.N, Rd, Rs, dis;
RRdis STxx.S, Rd, Rs, dis;

Operation Data Type xx
Ld"~ := Rs; W,D
[(Ld + 4)° := Rsf;]

-- register address mode

Ld~ := Rs; Ld := Ld + size; w,D
[(old Ld + 4)" := Rsf;]

-- postincrement address mode

(Rd + dis)~ := Rs;
[(Rd + dis + 4)~ := Rsf;]
-- displacement address mode

BU,BS,HU,HS,W,D

dis™ := Rs;
[(dis + 4)~ := Rsf;]
-- absolute address mode

BU,BS,HU,HS,W,D

(Rd + dis)” := Rs; w,D
[(Rd + dis + 4)" := Rsf;]

-- I/0 displacement address mode

dis~ := Rs; w,D

[(dis + 4)" := Rsf;]
-- I/O absolute address mode

Rd~ := Rs; Rd := Rd + dis;
[(old Rd + 4)" := Rsf;]
-- next address mode

BU,BS,HU,HS,W,D

Rd™ := Rs; Rd := Rd + dis;
-- stack address mode

Size is 1, 2, 4 or 8 according to a data size of byte, halfword, word or double-word

respectively.

The expressions in brackets are only executed at double-word data types.

In the case of byte and halfword data types, a trap to Range Error occurs when the

value of the operand to be stored exceeds the value range of the specified data type;

the byte or halfword is stored regardless of a Range Error.

Data Type xx is with:
BU: byte unsigned;
BS: byte signed;

HU: halfword unsigned;
HS:

W: word;

halfword signed; D: double-word;

3-10
3.1.4 Exchange Instruction

The Exchange instruction exchanges the data word in the addressed memory location
and Rs in one indivisible read-write cycle.

The Exchange instruction is executed analogous to a combination of a Load and Store
ister address of Rs and a code for the data type ()

into the load pipeline, the content of Rs and a code for the data type (word) is en-
tered into the store pipeline, the memory address is placed onto the address bus and
a memory cycle is started.

After execution of an Exchange instruction, the next instructions are executed without
waiting for the data word to be loaded or the memory cycle to finish. A wait is en-
forced only if an instruction uses a register whose register address is still in the load
pipeline. Data is transferred according to the execution of a Load and a Store in-
struction in sequence.

The content of Rd is used as an address into memory address space, then Rd is
incremented by dis. Bit one of dis is treated as zero for the calculation of Rd + dis.
The Exchange instruction shares its basic OP-code with the instruction STxx.N/S, it is
differentiated by the D-code = 3, dis(1) = 1 and dis(0) = 0.

At a Data Page Fault, the result of the exchange is undefined. Rs may only denote
the same register as Rd without changing the effect of the exchange when a Data
Page Fault cannot occur. Rd or Rs must not denote the PC or the SR.

Format Notation Operation
RRdis XCHW, Rd, Rs, dis; Rs := Rd"; Rd” := old Rs; -- exchange memory
Rd := Rd + dis; word

Note: The Exchange instruction is needed for programming semaphores. It provides the
capability to set a value in a memory location and inspect its previous content in one

indivisible memory cycle.

3 -11
3.2 Move Word Instructions

The source operand or the immediate operand is copied to the destination register and

the condition flags are set or cleared accordingly.

Format Notation Operation
RR MOV, Rd, Rs; Rd := Rs;
Z := Rd = 0;
N := Rd(31);
V := Rd(30..19) = all ones; -- for floating-point NaN

Rimm MOVI, Rd, imm; Rd := imm;

Z := Rd = 0
N := Rd(31);
V := 0;

3.3 Move Double-Word Instruction

The double-word source operand is copied to the double-word destination register pair
and the condition flags are set or cleared accordingly. The high-order word in Rs is
copied first.

When the SR is denoted as a source operand, the source operand is supplied as zero
regardless of the content of SR//G2. When the PC is denoted as destination, the
Return instruction RET is executed instead of the Move Double-Word instruction.

Format Notation Operation
RR MOVD, Rd, Rs; if Rd does not denote PC and Rs does not denote SR
then
Rd := Rs;
Rdf := Rsf;
Z := Rd//Rdf = 0;
N := Rd(31);
V := Rd(30..19) = all ones; -- for floating-point NaN
RR MOVD, Rd, 0; if Rd does not denote PC and Rs denotes SR then
Rd := 0;
Rdf := 0;
Z :=1;
N := 0
V=0

RR RET, PC, Rs; if Rd denotes PC then execute the RET instruction;

3-12
3.4 Logical Instructions

The result of a bitwise logical AND, AND not (ANDN), OR or exclusive OR (XOR) of
the source or immediate operand and the destination operand is placed in the destina-

tion register and the Z flag is set or cleared accordingly. At ANDN, the source ope-

PR, e rioand fecoaoe ad (34210 cnnlclc s i Lnenond)
I'alld I3 Udu 1nvel tUU \ltbcll I'clllaliliny ulitlialigcuj.

All operands and the result are interpreted as bitstrings of 32 bits each.

Format Notation Operation

RR AND, Rd, Rs; Rd := Rd and Rs; -- logical AND
Z := Rd = 0

RR ANDN, Rd, Rs; Rd := Rd and not Rs; -- logical AND with source
Z :=Rd = 0 used inverted

RR OR, Rd, Rs; Rd := Rd or Rs; -- logical OR
Z := Rd = 0

RR XOR, Rd, Rs; Rd := Rd xor Rs; -- logical exclusive OR
Z := Rd = 0;

Rimm ANDNI, Rd, imm; Rd := Rd and not imm; -- logical AND with imm
Z ;= Rd = 0 used inverted

Rimm ORI, Rd, imm; Rd := Rd or imm; -- logical OR
Z := Rd = 0;

Rimm XORI, Rd, imm; Rd := Rd xor imm; -- logical exclusive OR
Z := Rd = 0

Note: ANDN and ANDNI are the instructions complementary to OR and ORI: Where
OR and ORI set bits, ANDN and ANDNI clear bits at bit positions with a "one" bit in
the source or immediate operand, thus obviating the need for an inverted mask in

most cases.

3-13
3.5 Invert Instruction

The source operand is placed bitwise inverted in the destination register and the Z
flag is set or cleared accordingly.
The source operand and the result are interpreted as bitstrings of 32 bits each.

Format Notation Operation
RR NOT, Rd, Rs; Rd := not Rs;
Z := Rd = 0;

3.6 Mask Instruction

The result of a bitwise logical AND of the source operand and the immediate operand
is placed in the destination register and the Z flag is set or cleared accordingly.

All operands and the result are interpreted as bitstrings of 32 bits each.

Format Notation Operation
RRconst MASK, Rd, Rs, const; Rd := Rs and const;
Z := Rd = 0

Note: The Mask instruction may be used to move a source operand with bits partly
masked out by an immediate operand used as mask. The immediate operand const is
constrained in its range by bits 31 and 30 being either both zero or both one (see
format RRconst). If these bits are required to be different, the instruction pair MOVI,
AND may be used instead of MASK.

3-14
3.7 Add Instructions

The source operand, the source operand + C or the immediate operand is added to
the destination operand, the result is placed in the destination register and the condi-

tion flags are set or cleared accordingly.
At ADD ADDC and ADDI

ntarnratad
Al AL, S né AL, < ea

a i
C HIlCIpIeLc

signed or all unsigned integers. At ADDS and ADDSI, both operands and the result are
signed integers and a trap to Range Error occurs at overflow.

Format Notation Operation
RR ADD, Rd, Rs; Rd := Rd + Rs; -- signed or unsigned Add
Z :=Rd = 0
N := Rd(31) xor overflow; -- true sign
V := overflow;
C := carry;
RR ADDS, Rd, Rs; Rd := Rd + Rs; -- signed Add with trap
Z := Rd = 0
N := Rd(31) xor overflow; -- true sign
V := overflow;

if overflow then trap -> Range Error;

RR ADDC, Rd, Rs; Rd := Rd + Rs + C; -- signed or unsigned Add
Z := Z and (Rd = 0); with carry
N := Rd(31) xor overflow; -- true sign
V := overflow;
C := carry;

When the SR is denoted as a source operand at ADD, ADDS and ADDC, C is added
instead of the SR. The notation is then:

Format Notation Operation

RR ADD, Rd, C; Rd := Rd + G; -- signed or unsigned Add C
RR ADDS, Rd, C; Rd := Rd + C; -- signed Add C with trap
RR ADDC, Rd, C; Rd := Rd + C;

The flags and the trap condition are treated as defined by ADD, ADDS or ADDC.

3-15

3.7 Add Instructions (continued)

Format Notation Operation
Rimm ADDI, Rd, imm; Rd := Rd + imm; -- signed or unsigned Add
Z :=Rd = 0
N := Rd(31) xor overflow; -- true sign
V := overflow;
C := carry;
Rimm ADDSI, Rd, imm; Rd := Rd + imm; -- signed Add with trap
Z := Rd = 0;
N := Rd(31) xor overflow; -- true sign
V := overflow;

if overflow then trap -> Range Error;

The following instructions are special cases of ADDI and ADDSI differentiated by

n = 0 (see table of immediate values):

Format Notation Operation

Rimm ADDI, Rd, CZ; Rd := Rd + (C and (Z = 0 or Rd(0))); -- round to
even

Rimm ADDSI, Rd, CZ; Rd := Rd + (C and (Z = 0 or Rd(0))); -- round to
even

The flags and the trap condition are treated as defined by ADDI or ADDSI.

Note: At ADDC, Z is cleared if Rd /= 0, otherwise left unchanged; thus, Z is evalua-
ted correctly for multi-precision operands.

The effect of a Subtract immediate instruction can be obtained by using the negated
32-bit value of the immediate operand to be subtracted (except zero). At unsigned,
C = 0 indicates then a borrow (the unsigned number range is exceeded below zero).
At "round to even", C is only added to the destination operand if Z = 0 or Rd(0) is
one. The Z flag is assumed to be set or cleared by a preceding Shift Left instruction.
"Round to even" provides a better averaging of rounding errors than "add carry".
"Round to even" is equivalent to "round to nearest" at the Floating-Point instructions

and may be used to implement them.

3-16
3.8 Sum Instructions

The sum of the source operand and the immediate operand is placed in the destina-
tion register and the condition flags are set or cleared accordingly. At SUM, both

operands and the result are interpreted as either all signed or all unsigned integers.

At SUMS, both operands and the result are signed integers and a trap to Range Error
occurs at overflow.
Format Notation Operation
RRconst SUM, Rd, Rs, const; Rd := Rs + const; -- signed or unsigned Sum
Z :=Rd = 0
N := Rd(31) xor overflow; -- true sign
V := overflow;
C := carry;
RRconst SUMS, Rd, Rs, const; Rd := Rs + const; -- signed Sum with trap
Z := Rd = 0;
N := Rd(31) xor overflow; -- true sign
V := overflow;

if overflow then trap -> Range Error;

When the SR is denoted as a source operand at SUM and SUMS, C is added instead
of the SR. The notation is then:

Format Notation Operation
RRconst SUM, Rd, C, const; Rd':= C + const; -- signed or unsigned Sum C
RRconst SUMS, Rd, C, const; Rd := C + const; -- signed Sum C

The flags are treated as defined by SUM or SUMS. A trap cannot occur.

Note: The effect of a Subtract immediate instruction can be obtained by using the
negated 32-bit value of the immediate operand to be subtracted (except zero). At
unsigned, C = 0 indicates then a borrow (the unsigned number range is exceeded
below zero).

The immediate operand is constrained to the range of const. The instruction pair
MOV, ADDI or MOV, ADDSI may be used where the full integer range is required.

3 -17
3.9 Subtract Instructions

The source operand or the source operand + C is subtracted from the destination ope-
rand, the result is placed in the destination register and the condition flags are set or
cleared accordingly.

At SUB and SUBC, both operands and the result are interpreted as either all signed
or all unsigned integers. At SUBS, both operands and the result are signed integers

and a trap to Range Error occurs at overflow.

Format Notation Operation
RR SUB, Rd, Rs; Rd := Rd - Rs; -- signed or unsigned Subtract
Z := Rd = 0;
N := Rd(31) xor overflow; -- true sign
V := overflow; :
C := borrow;
RR SUBS, Rd, Rs; Rd := Rd - Rs; -- signed Subtract with trap
Z := Rd = 0;
N := Rd(31) xor overflow; -- true sign
V := overflow;

if overflow then trap -> Range Error;

RR SUBC, Rd, Rs; Rd := Rd - (Rs + C); -- signed or unsigned Subtract
Z := Z and (Rd = 0); with borrow
N := Rd(31) xor overflow; -- true sign
V := overflow;
C := borrow;

When the SR is denoted as a source operand at SUB, SUBS and SUBC, C is subtrac-
ted instead of the SR. The notation is then:

Format Notation Operation

RR SUB, Rd, C; Rd := Rd - C; -- signed or unsigned Subtract C
RR SUBS, Rd, C; Rd := Rd - C; -- signed Subtract C with trap
RR SUBC, Rd, C; Rd := Rd - C;

The flags and the trap condition are treated as defined by SUB, SUBS or SUBC.

Note: At SUBC, Z is cleared if Rd /= 0, otherwise left unchanged; thus, Z is evalua-

ted correctly for multi-precision operands.

3-18
3.10 Negate Instructions

The source operand is subtracted from zero, the result is placed in the destination
register and the condition flags are set or cleared accordingly.

At NEG and NEGC, the source operand and the result are interpreted as either both
Ad imtacara A+) oY@ N tha gniir~an Anaran A and +tha wacle Ana
ITU LHLTCETIOS. ML IVLUY, UWUIT JUulLT uvpcidilu ailu i resuit arc

trap to Range Error occurs at overflow.

Format Notation Operation
RR NEG, Rd, Rs; Rd := - Rs; -- signed or unsigned Negate
Z := Rd = 0;
N := Rd(31) xor overflow; -- true sign
V := overflow;
C := borrow;
RR NEGS, Rd, Rs; Rd := - Rs; -- signed Negate with trap
Z :=Rd = 0
N := Rd(31) xor overflow; -- true sign
V := overflow;

if overflow then trap -> Range Error;

When the SR is denoted as a source operand at NEG and NEGS, C is negated instead
of the SR. The notation is then:

Format Notation Operation

RR NEG, Rd, C; Rd := - G; -- signed or unsigned Negate C
if C is set, then Rd := -1;
else Rd := 0;

RR NEGS, Rd, C; Rd := - C; -- signed Negate C
if C is set, then Rd := -1;
else Rd := 0;

The flags are treated as defined by NEG or NEGS. A trap cannot occur.

3-19
3.11 Multiply Word Instruction

The source operand and the destination operand are multiplied, the low-order word of
the double-word product is placed in the destination register (the high-order product
word is discarded) and the condition flags are set or cleared according to the double-
word product (this is the same as according to the low-order word when no Range
Error occurred).

After execution, a trap to Range Error occurs if the high-order word of the product
is not the sign extension of the low-order word (that is, if any bit of the high-order
word is different from the sign bit of the low-order word).

Both operands are signed integers, the product is a signed double-word integer and the
low-order word of it is also a signed integer when no Range Error occurred.

The result is undefined if Rs denotes the same register as Rd or if the PC or the SR

is denoted.
Format Notation Operation
RR MUL, Rd, Rs; Rd := low order word of doubleword product Rd * Rs;

Z := doubleword product = 0;
-- same as Rd = 0 if no trap;
N := sign of doubleword product;
-- same as Rd(31) if no trap;
V := any bit of high order product word /= Rd(31);
C := high order product word /= 0;
if V = 1 then trap -> Range Error;

3-20
3.12 Multiply Double-Word Instructions

The source operand and the destination operand are multiplied, the double-word pro-
duct is placed in the destination register pair (the destination register expanded by
the register following it) and the condition flags are set or cleared according to the
double-word product

At MULS, both operands are signed integers and the product is a signed double-word
integer. At MULU, both operands are unsigned integers and the product is an unsigned
double-word integer.

The result is undefined if Rs denotes the same register as Rd or if the PC or the SR
is denoted. However, Rs may denote the same register as Rdf; Rdf is overwritten by

the low-order product word after the actual multiplication is executed.

Format Notation Operation
RR MULS, Rd, Rs; Rd//Rdf := signed doubleword product of Rd * Rs;
Z := Rd//Rdf = 0;
-- doubleword product is zero
N := Rd(31);
-- doubleword product is negative
V := any bit of Rd /= Rdf(31);
C := Rd /= 0;
RR MULU, Rd, Rs; Rd//Rdf := unsigned doubleword product of Rd * Rs;
Z := Rd//Rdf = 0;
-- doubleword product is zero
N := Rd(31);
V := any bit of Rd /= Rdf(31);
C := Rd /= 0;

3 -21
3.13 Divide Instructions

The double-word destination operand (dividend) is divided by the single-word source
operand (divisor), the quotient is placed in the low-order destination register (Rdf),
the remainder is placed in the high-order destination register (Rd) and the condition
flags are set or cleared according to the quotient.

A trap to Range Error occurs if the divisor is zero or the value of the quotient ex-
ceeds the integer value range (quotient overflow). The result (in Rd//Rdf) is then un-
defined. At DIVS, a trap to Range Error also occurs and the result is undefined if the
dividend is negative.

At DIVS, the dividend is a non-negative signed double-word integer, the divisor, the
quotient and the remainder are signed integers; a non-zero remainder has the sign of
the dividend.

At DIVU, the dividend is an unsigned double-word integer, the divisor, the quotient
and the remainder are unsigned integers.

The result is undefined if Rs denotes the same register as Rd or Rdf or if the PC or
the SR is denoted.

Format Notation Operation
RR DIVS, Rd, Rs; if Rs = 0 or quotient overflow
or Rd(31) = 1 then -- dividend is negative
Rd//Rdf := undefined;
Z := undefined;
N := undefined;
V=1

trap -> Range Error;
else remainder Rd, quotient Rdf := (Rd//Rdf) / Rs;

Z := Rdf = 0; -- quotient is zero
N := Rdf(31); -- quotient is negative
V=0
RR DIVU, Rd, Rs; if Rs = 0 or quotient overflow then
Rd//Rdf := undefined;
Z := undefined;
N := undefined;
V= 1;

trap -> Range Error;
else remainder Rd, quotient Rdf := (Rd//Rdf) / Rs;

V4 Rdf = 0; -- quotient is zero

N := Rdf(31);

V= 0

1]

3 -22
3.14 Shift Left Instructions

The destination operand is shifted left by a number of bit positions specified
at SALI, SALDI, SHLI SHLDI by n = 0..31 as a shift by 0..31;

The destination operand is interpreted
at SALI as a signed integer; a trap to Range Error can occur;
at SALDI as a signed double-word integer; a trap to Range Error can occur;
at SHL and SHLI as a bitstring of 32 bits or as a signed or unsigned integer;
at SHLD and SHLDI as a double-word bitstring of 64 bits or as a signed or
unsigned double-word integer.
All Shift Left instructions insert zeros in the vacated bit positions at the right.
The double-word Shift Left instructions execute in two cycles. The low-order operand
in Ldf is shifted first. At SHLD, the result is undefined if Ls denotes the same regi-
ster as Ld or Ldf.

Format Notation Operation insert

Rn SALI, Rd, n; Rd := Rd << by n; -- 0..31 zeros
if any bit /= new Rd(31) is shifted out
then trap -> Range Error;

Ln SALDI, Ld, n; Ld//Ldf := Ld//Ldf << by n; -- 0..31 zeros
if any bit /= new Ld(31) is shifted out
then trap -> Range Error;

Rn SHLI, Rd, n; Rd := Rd << by n; -- 0..31 zeros
Ln SHLDI, Ld, n; Ld//Ldf := Ld//Ldf << by n; -- 0..31 zeros
LL SHL, Ld, Ls; Ld := Ld << by Ls(4..0); -- 0..31 zeros
LL SHLD, Ld, Ls; Ld//Ldf := Ld//Ldf << by Ls(4..0; -- 0..31 zeros

The condition flags are set or cleared by all Shift Left instructions as follows:

Z := Ld = 0 or Rd = 0 at single-word;

Z := Ld//Ldf = 0 at double-word;

N := old Ld(31) or Rd(31) before shift; -- same as new Ld(31) or Rd(31) if V = 0
V := any bit /= new Ld(31) or Rd(31) is shifted out; -- significant bits lost

C := any bit /= 0 is shifted out; -- leading ones lost

At SALI and SALDI, a trap to Range Error occurs if significant bits are shifted out
(Vv =1).
Note: The symbol << signifies "shifted left".

3-23
3.15 Shift Right Instructions

The destination operand is shifted right by a number of bit positions specified
at SARI, SARDI, SHRI, SHRDI by n = 0..31 as a shift by 0..31.
at SAR, SARD, SHR, SHRD by bits 4..0 of the source operand as a shift by
0..31.
The higher-order bits of the source operand are ignored.
The destination operand is interpreted
at SAR and SARI as a signed integer;
at SARD and SARDI as a signed double-word integer;
at SHR and SHRI as a bitstring of 32 bits or as an unsigned integer;
at SHRD and SHRDI as a double-word bitstring of 64 bits or as an unsigned
double-word integer.
All Shift Right instructions which interpret the destination operand as signed insert
sign bits, all others insert zeros in the vacated bit positions at the left.
The double-word Shift Right instructions execute in two cycles. The high-order ope-
rand in Ld is shifted first. At SARD and SHRD, the result is undefined if Ls denotes

the same register as Ld or Ldf.

Format Notation Operation insert

Rn SARI, Rd, n; Rd := Rd >> by n; -- 0..31 sign bits
Ln SARDI, Ld, n; Ld//Ldf := Ld//Ldf >> by n; -- 0..31 sign bits
LL SAR, Ld, Ls; Ld := Ld >> by Ls(4..0); -- 0..31 sign bits
LL SARD, Ld, Ls; Ld//Ldf := Ld//Ldf >> by Ls(4..0); -- 0..31 sign bits
Rn SHRI, Rd, n; Rd := Rd >> by n; -- 0..31 zeros
Ln SHRDI, Ld, n; Ld//Ldf := Ld//Ldf >> by n; -- 0..31 zeros
LL SHR, Ld, Ls; Ld := Ld >> by Ls(4..0); -- 0..31 zeros
LL SHRD, Ld, Ls; Ld//Ldf := Ld//Ldf >> by Ls(4..0); -- 0..31 zeros

The condition flags are set or cleared by all Shift Right instructions as follows:

Ld = 0 or Rd = 0 at single-word;
Ld//Ldf = 0 at double-word;
Ld(31) or Rd(31);

last bit shifted out is "one";

O Z NN
0

Note: The symbol >> signifies "shifted right".

3-24

3.16 Rotate Left Instruction

The destination operand is shifted left by a number of bit positions and the bits shif-

ted out are inserted in the vacated bit positions; thus, the destination operand is ro-

tated. The condition flags are set or cleared accordingly. Bits 4..0 of the source ope-

-
n
w
—
3]
Q
"
ct

ignored.
The destination operand is interpreted as a bitstring of 32 bits.

Format Notation Operation

LL ROL, Ld, Ls; Ld := Ld rotated left by Ls(4..0);
Z :=1Ld = 0
N := old Ld(31) before shift;
-- same as new Ld(31) if V = 0
:= any bit /= new Ld(31) is shifted out;
:= any bit /= 0 is shifted out;

0O <
W

arn
aic

Note: The condition flags are set or cleared by the same rules applying to the Shift

Left instructions.

3-25
3.17 Index Move Instructions

The source operand is placed shifted left by 0, 1, 2 or 3 bit positions in the destina-
tion register, corresponding to a multiplication by 1, 2, 4 or 8. If the source operand
is higher than the immediate operand lim (upper bound), a trap to Range Error occurs
(after execution). At XM1Z, XM2Z, XM4Z and XM8Z, a trap to Range Error occurs
also if the source operand is zero.

All condition flags remain unchanged. All operands and the result are interpreted as
unsigned integers.

The SR must not be denoted as a source or a destination, nor the PC as a destina-
tion operand; these notations are reserved for future expansion. When the PC is deno-

ted as a source operand, a trap to Range Error occurs if PC >= lim.

X-code Format Notation Operation

0 RRIlim XM1, Rd, Rs, lim; Rd := Rs * 1; if Rs > lim

then trap -> Range Error;
1 RRIlim XM2, Rd, Rs, lim; Rd := Rs * 2; if Rs > lim

then trap -> Range Error;
2 RRIlim XM4, Rd, Rs, lim; Rd := Rs * 4; if Rs > lim

then trap -> Range Error;
3 RRIlim XM8, Rd, Rs, lim; Rd := Rs * 8; if Rs > lim

then trap -> Range Error;
4 RRIlim XM1Z, Rd, Rs, lim; Rd := Rs * 1; if Rs > lim or Rs = 0

then trap -> Range Error;
5 RRIlim XM2Z, Rd, Rs, lim; Rd := Rs ¥ 2; if Rs > lim or Rs = 0

then trap -> Range Error;
6 RRIlim XM4Z, Rd, Rs, lim; Rd := Rs ¥ 4; if Rs > limor Rs = 0

then trap -> Range Error;
7 RRIlim XM8Z, Rd, Rs, lim; Rd := Rs * 8; if Rs > lim or Rs = 0

then trap -> Range Error;

Note: The Index Move instructions move an index value scaled and check the unscaled

valu n upp und, optionally also excluding zero. If the lower bound is not

zero or one, it may be mapped to zero by subtracting it from the index value before

applying an Index Move instruction.

3 - 26
3.18 Check Instructions

The destination operand is checked and a trap to Range Error occurs
at CHK if the destination operand is higher than the source operand,

at CHKZ if the destination operand is zero.

unsigned integers.
CHKZ shares its basic OP-code with CHK, it is differentiated by denoting the SR as

source operand.
Format Notation Operation

RR CHK, Rd, Rs; if Rs does not denote SR and Rd > Rs
then trap -> Range Error;

RR CHKZ, Rd, 0; if Rs denotes SR and Rd = 0
then trap -> Range Error;

When Rs denotes the PC, CHK traps if Rd >= PC. Thus, CHK, PC, PC always traps.
Since CHK, PC, PC is encoded as 16 zeros, an erroneous jump into a string of zeros

causes a trap to Range Error, thus trapping some address errors.

Note: CHK checks the upper bound of an unsigned value range, implying a lower
bound of zero. If the lower bound is not zero, it can be mapped to zero by subtrac-
ting it from the value to be checked and then checking against a corrected upper
bound (lower bound also subtracted). When the upper bound is a constant not excee-
ding the range of lim, the Index instructions may be used for bounds checks.

CHKZ may be used to trap on uninitialized pointers with the value zero.

3.19 No Operation Instruction

The instruction CHK, L0, L0 cannot cause any trap. Since CHK leaves all registers

and condition flags unchanged, it can be used as a No Operation instruction with the

notation:
Format Notation Operation
RR NOP; no operation;

Note: The NOP instruction may be used as a fill instruction.

3 - 27
3.20 Compare Instructions

Two operands are compared by subtracting the source operand or the immediate ope-
rand from the destination operand. The condition flags are set or cleared according to
the result; the result itself is not retained.

All operands and the result are interpreted as either all signed or all unsigned inte-

gers.
Format Notation Operation
RR CMP, Rd, Rs; result := Rd - Rs;
Z := Rd = Rs; -- result is zero
N := Rd < Rs signed; -- result is true negative
V := overflow;
C := Rd < Rs unsigned; -- borrow
Rimm CMPI, Rd, imm; result := Rd - imm;
Z := Rd = imm; -- result is zero
N := Rd < imm signed; -- result is true negative
V := overflow;
C := Rd < imm unsigned; -- borrow

When the SR is denoted as a source operand at CMP, C is subtracted instead of SR.

The notation is then:

Format Notation Operation
RR CMP, Rd, C; result := Rd - C;
Z = Rd = C; -- result is zero
N := Rd < C signed; -- result is true negative
V := overflow;
C := Rd < C unsigned; -- borrow

3 -28
3.21 Compare Bit Instructions

The result of a bitwise logical AND of the source or immediate operand and the
destination operand is used to set or clear the Z flag accordingly; the result itself is
not retained.

All operands and the result are interpreted as bitstrings of 32 bits each.
Format Notation Operation

RR CMPB, Rd, Rs; Z (Rd and Rs) = 0;

Rimm CMPBI, Rd, imm; Z := (Rd and imm) = 0;

The following instruction is a special case of CMPBI differentiated by n = 0 (see

table of immediate values):

Format Notation Operation

Rimm CMPBI, Rd, ANYBZ; Z := Rd(31..24) = 0 or Rd(23..16)
or Rd(15..8) = 0 or Rd(7..0)
-- any Byte of Rd = 0

S o

3.22 Test Leading Zeros Instruction

The number of leading zeros in the source operand is tested and placed in the desti-
nation register. A source operand equal to zero yields 32 as a result. All condition

flags remain unchanged.
Format Notation Operation

LL TESTLZ, Ld, Ls; Ld := number of leading zeros in Ls;

3-29
3.23 Set Stack Address Instruction

The frame pointer FP is placed, expanded to the stack address, in the destination re-
gister. The FP itself and all condition flags remain unchanged. The expanded FP ad-

ushed onto the
nten W sneg onte tne

dress is the address at which the content of LO would be stored if
memory part of the stack.
The Set Stack Address instruction shares the basic OP-code SETxx, it is differentiated

by n = 0 and not denoting the SR or the PC.
n Format Notation Operation

0 Rn SETADR, Rd; Rd := SP(31..9)//SR(31..25)//00 + carry into bit 9
-- SR(31..25) is FP
-- carry into bit 9 := (SP(8) = 1 and SR(31) = 0)

Note: The Set Stack Address instruction calculates the stack address of the beginning
of the current stack frame. L0..L15 of this frame can then be addressed relative to
this stack address in the stack address mode with displacement values of 0..60
respectively.

Provided the stack address of a stack frame has been saved, for example in a global
register, any data in this stack frame can then be addressed also from within all
younger generations of stack frames by using the saved stack address. (Addressing of
local variables in older generations of stack frames is required by all block oriented

programming languages like Pascal, Modula-2 and Ada.)
The basic OP-code SETxx is shared as indicated:

- n = 0 while not denoting the SR or the PC differentiates the Set Stack Address
instruction.

- n = 1..31 while not denoting the SR or the PC differentiates the Set Conditional
instructions.

- Denoting the SR differentiates the Fetch instruction.

Denoting the PC is reserved for future use.

3.24 Set Conditional Instructions

flags specified by n. The condition flags themselves remain unchanged.
The Set Conditional instructions share the basic OP-code SETxx, they are differen-
tiated by n = 1..31 and not denoting the SR or the PC.

3 -30

3.24 Set Conditional Instructions (continued)

Format is Rn

n

—

© 00 N O L oA W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Notation or

Reserved
SET1, Rd;
SETO0, Rd;
SETLE, Rd;
SETGT, Rd;
SETLT, Rd;
SETGE, Rd
SETSE, Rd;
SETHT, Rd;
SETST, Rd;
SETHE, Rd;
SETE, Rd;
SETNE, Rd;
SETV, Rd;
SETNV, Rd;
Reserved
Reserved
SET1M, Rd;
Reserved
SETLEM, Rd;
SETGTM, Rd;
SETLTM, Rd;
SETGEM, Rd;
SETSEM, Rd;
SETHTM, Rd;
SETSTM, Rd;
SETHEM, Rd;
SETEM, Rd;
SETNEM, Rd;
SETVM, Rd;
SETNVM, Rd;

Alternative

SETN, Rd;
SETNN, Rd;

SETC, Rd;
SETNC, Rd;
SETZ, Rd;
SETNZ, Rd;

SETNM, Rd;
SETNNM, Rd;

SETCM, Rd;
SETNCM, Rd;
SETZM, Rd;

SETNZM, Rd;

Operation

Rd := 1;

Rd := 0;

if N=1or Z =1 then Rd := 1 else Rd := 0;
if N=0and Z = 0 then Rd := 1 else Rd := 0;
if N =1 then Rd := 1 else Rd := 0;

if N = 0 then Rd := 1 else Rd := 0;

if C=1o0or Z =1 then Rd := 1 else Rd := 0;
if C=0and Z = 0 then Rd := 1 else Rd := 0;
if C =1 then Rd := 1 else Rd := 0;

if C = 0 then Rd := 1 else Rd := 0;

if Z =1 then Rd := 1 else Rd := 0;

if Z = 0 then Rd := 1 else Rd := 0;

if V=1 then Rd := 1 else Rd := 0;

if V.= 0 then Rd := 1 else Rd := 0;

Rd := -1;

if N=1or Z =1 then Rd := -1 else Rd := 0;
if N=0 and Z = 0 then Rd := -1 else Rd := 0;
if N =1 then Rd := -1 else Rd := 0;

if N = 0 then Rd := -1 else Rd := 0;

if C=1o0r Z =1 then Rd := -1 else Rd := 0;
if C=0and Z = 0 then Rd := -1 else Rd := 0;
if C = 1 then Rd := -1 else Rd := 0;

if C = 0 then Rd := -1 else Rd := 0;

if Z =1 then Rd := -1 else Rd := 0;

if Z = 0 then Rd := -1 else Rd := 0;

if V = 1 then Rd := -1 else Rd := 0;

if V.= 0 then Rd := -1 else Rd := 0;

3 - 31
3.25 Branch Instructions

The Branch instruction BR, and any of the conditional Branch instructions when the
branch condition is met, place the branch address PC + rel (relative to the address of
the first byte after the Branch instruction) in the program counter PC and clear the
cache-mode flag M; all condition flags remain unchanged. Instruction execution pro-
ceeds then at the branch address placed in the PC.

When the branch condition is not met, the M flag and the condition flags remain un-
changed and instruction execution proceeds sequentially.

Besides these explicit Branch instructions, the instructions MOV, MOVI, ADD, ADDI,
SUM, SUB may denote the PC as a destination register and thus be executed as an
implicit branch; the M flag is cleared and the condition flags are set or cleared ac-
cording to the specified instruction.

All other non-comparing instructions must not be used with the PC as destination,
otherwise possible Range Errors caused by these instructions would lead to ambiguous

results on backtracking.

Format is PCrel

Notation or alternative Operation Comment

BLE, rel; if N=1or Z =1 then BR; -- Less or Equal signed
BGT, rel; if N =0 and Z = 0 then BR; -- Greater Than signed
BLT, rel; BN, rel; if N = 1 then BR; -- Less Than signed

BGE, rel; BNN, rel; if N = 0 then BR; -- Greater or Equal signed
BSE, rel; if C=1or Z =1 then BR; -- Smaller or Equal unsigned
BHT, rel; if C =0 and Z = 0 then BR; -- Higher Than unsigned
BST, rel; BC, rel; if C = 1 then BR; -- Smaller Than unsigned
BHE, rel; BNC, rel; if C = 0 then BR; -- Higher or Equal unsigned
BE, rel; BZ, rel; if Z = 1 then BR; -- Equal

BNE, rel; BNZ, rel; if Z = 0 then BR; -- Not Equal

BV, rel; if V = 1 then BR; -- oVerflow

BNV, rel; if V.= 0 then BR; -- Not oVerflow

BR, rel; PC := PC + rel; M := 0;

Note: rel is signed to allow forward or backward branches.

3 - 32
3.26 Delayed Branch Instructions

The Delayed Branch instruction DBR, and any of the conditional Delayed Branch in-
structions when the branch condition is met, place the branch address PC + rel (rela-
tive to the address of the first byte after the Delayed Branch instruction) in the pro-
gram counter PC. All condition flags and the cache mode flag M remain unchanged.
Then the instruction after the Delayed Branch instruction, called the delay instruction,
is executed regardless of whether the delayed branch is taken or not taken.

When the delayed branch is not taken, the delay instruction is executed like a regular
instruction. The PC and the ILC are updated accordingly and instruction execution
proceeds sequentially unless the delay instruction itself causes a branch.

When the delayed branch is taken, the delay instruction is executed before execution
proceeds at the branch target. The PC (containing the delayed-branch target address)
is not updated by the delay instruction unless the delay instruction itself causes a
branch. Any reference to the PC by the delay instruction references the delayed-
branch target address. Thus, a PC-relative branch placed as delay instruction becomes
a branch relative to the delayed-branch target address. Exactly as after all branches
taken, the ILC is invalid.

A Software instruction, a Branch, Call or Trap instruction with a branch taken or an
implicit branch used as delay instruction overrules the target address of the preceding
delayed branch. The target instruction of the overruling branch is always fetched from
memory and the instruction cache is flushed. A Call, Trap or Software instruction
saves its instruction length in the place of the saved ILC (the standard case), but
saves the delayed-branch target address in the place of the saved PC. On return, in-
struction execution proceeds then at the delayed-branch target address.

In the case of an error or Data Page Fault exception caused by a delay instruction
succeeding a delayed branch taken, the location of the saved return PC contains the
address of the first byte of the delay instruction. The saved ILC contains the length
(1 or 2 halfwords) of the Delayed Branch instruction. In the case of all other excep-
tions following a non-branch-taking delay instruction succeeding a delayed branch
taken, the location of the saved return PC contains the branch target address of the
delayed branch and the saved ILC is invalid. In the case of all exceptions following a
branch-taking delay instruction, the location of the saved return PC contains the
branch target address of the branching delay instruction and the saved ILC is invalid

(like the standard case for an exception following a branch taken).

3-33
3.26 Delayed Branch Instructions (continued)

The following restrictions apply to delay instructions:

The sum of the length of the Delayed Branch instruction and the delay instruction
must not exceed three halfwords, otherwise an arbitrary bit pattern may be supplied
and erroneously used for the second or third halfword of the delay instruction without
any warning.

The Delayed Branch instruction and the delay instruction are locked against any ex-
ception disrupting them (except Reset).

A Fetch, Do, Extend, Return or Delayed Branch instruction must not be placed as a
delay instruction. Any such misplaced Delayed Branch instruction would be executed
like the corresponding non-delayed Branch instruction to inhibit a permanent exception

lock-out.

Format is PCrel

Notation or alternative Operation Comment

DBLE, rel; if N=1or Z =1 then DBR; -- Less or Equal signed
DBGT, rel; if N=0and Z = 0 then DBR; -- Greater Than signed
DBLT, rel; DBN, rel; if N = 1 then DBR; -- Less Than signed

DBGE, rel; DBNN, rel; if N = 0 then DBR; -- Greater or Equal signed
DBSE, rel; if C=1o0or Z =1 then DBR; -- Smaller or Equal unsigned
DBHT, rel; if C =0 and Z = 0 then DBR; -- Higher Than unsigned
DBST, rel; DBC, rel; if C = 1 then DBR; -- Smaller Than unsigned
DBHE, rel; DBNC, rel; if C = 0 then DBR; -- Higher or Equal unsigned
DBE, rel; DBZ, rel; if Z = 1 then DBR; -- Equal

DBNE, rel; DBNZ, rel; if Z = 0 then DBR; -- Not Equal

DBV, rel; if V=1 then DBR; -- oVerflow

DBNYV, rel; if V.= 0 then DBR; -- Not oVerflow

DBR, rel; PC := PC + rel;

Note: rel is signed to allow forward or backward branches.

Using a branching instruction as delay instruction provides no timing advantage; it
might be used however for supplying a non-sequential return address to a Call, Trap
or Software instruction.

Since the PC seen by the delay instruction depends on the delayed branch taken or
not taken, a delay instruction after a conditional Delayed Branch instruction should

not reference the PC.

3-34
3.27 Call Instructions

The Call instructions CALL and CALLV when V = 1 cause a branch to a subprogram.
When at CALLV V = 0, instruction execution proceeds sequentially.
When the subprogram branch is taken, the branch address Rs + const, or const alone

notaeg tha SR
OLeS U SI

en the Sk rogram counter PC, The cld PC

if Rs , is p unter PC. Th containin
the return address is saved in Ld; the old supervisor-state flag S is also saved in bit
zero of Ld. The old status register SR is saved in Ldf; the saved instruction-length
code ILC contains the length (2 or 3) of the Call instruction.

Then the frame pointer FP is incremented by the value of the Ld-code (Ld-code = 0
is interpreted as Ld-code = 16) and the frame length FL is set to six, thus creating a
new stack frame. The cache-mode flag M is cleared. All condition flags remain
unchanged.

The value of the Ld-code must not exceed the value of the old FL (FL = 0 is inter-
preted as FL = 16), otherwise the beginning of the register part of the stack at the
SP could be overwritten without any warning.

Instruction execution then proceeds at the branch address placed in the PC.

CALL and CALLV share the same OP-code; they are differentiated by bit zero of
const: zero indicates CALL, one indicates CALLV. Bit zero of const is treated as
zero for calculating Rs + const regardless of its value.

Rs and Ld may denote the same register.

Format Notation Operation

LRconst CALLV, Ld, Rs, const; if V.= 1 then execute CALL;
or CALLV, Ld, 0, const; else next instruction;

LRconst CALL, Ld, Rs, const; if Rs denotes not SR then PC := Rs + const;
or CALL, Ld, 0, const; else PC := const;

Ld := old PC(31..1)//old S;
-- Ld-code 0 selects L16
Ldf := old SR;
FP := FP + Ld code;
-- Ld-code 0 is treated as 16

Note: At the new stack frame, the saved PC can be addressed as LO and the saved

SR as L1; L2,

8 are fre
o are ire

(4]

1 1 for use as reqguired
1 9 o i0r use as requirea.

A Frame instruction must be executed before executing any other Call, Trap or Soft-
ware instruction, otherwise the beginning of the register part of the stack at the SP

could be overwritten without any warning.

3-35
3.28 Trap Instructions

The Trap instructions TRAP and any of the conditional Trap instructions when the
trap condition is met, cause a branch to one out of 64 supervisor subprogram entries.
When the trap condition is not met, instruction execution proceeds sequentially.

When the subprogram branch is taken, the subprogram entry address adr is placed in
the program counter PC and the supervisor-state flag S is set to one. The old PC
containing the return address is saved in the register addressed by FP + FL; the old S
flag is also saved in bit zero of this register. The old status register SR is saved in
the register addressed by FP + FL + 1 (FL = 0 is interpreted as FL = 16); the saved
instruction-length code ILC contains the length (1) of the Trap instruction.

Then the frame pointer FP is incremented by the old frame length FL and FL is set
to six, thus creating a new stack frame. The cache-mode flag M and the trace-mode
flag T are cleared, the interrupt-lock flag L is set to one. All condition flags remain
unchanged.

Instruction execution then proceeds at the entry address placed in the PC.

The trap instructions are further differentiated by the 12 code values given by the
bits 9 and 8 of the OP-code and bits 1 and 0 of the adr-byte (code = OP(9..8)//adr-

byte(1..0)). The code values 0..3 are not available.

3 - 36

3.28 Trap Instructions (continued)

Format is PCadr
Code Notation

4
5
6
7
8
9

10
11
12
13
14
15

TRAPLE, adr;
TRAPGT, adr;
TRAPLT, adr;
TRAPGE, adr;
TRAPSE, adr;
TRAPHT, adr;
TRAPST, adr;
TRAPHE, adr;
TRAPE, adr;

TRAPNE, adr;
TRAPV, adr;

TRAP, adr;

Operation

if N=1or Z =1 then execute TRAP; else next instruction;
if = 0 and Z = 0 then execute TRAP; else next instruction;
if = 1 then execute TRAP; else next instruction;

= 0 then execute TRAP; else next instruction;

n
—

or Z = 1 then execute TRAP; else next instruction;

and Z = 0 then execute TRAP; else next instruction;

=
< NNOOO O Z2 Z2 Z
"
(=]

if = 1 then execute TRAP; else next instruction;
if = 0 then execute TRAP; else next instruction;
if Z = 1 then execute TRAP; else next instruction;
if Z = 0 then execute TRAP; else next instruction;
if = 1 then execute TRAP; else next instruction;
PC := adr;

S :=1;

(FP + FL)" := old PC(31..1)//old S;
(FP + FL + 1)" := old SR;

FP := FP + FL; -- FL = 0 is treated as FL = 16
FL := 6;
M := 0;
T := 0;
L:=1;

Note: At the new stack frame, the saved PC can be addressed as L0 and the saved
SR as L1; L2..L5 are free for use as required. As long as the interrupt-lock flag L is

kept at one and no Frame instruction or any instruction with the potential to cause

an exception is executed, registers L6..L9 can also be used by those trap routines

which do not share their entry with any exception entry.
A Frame instruction must be executed before executing any other Trap, Call or Soft-

ware instruction, otherwise the beginning of the register part of the stack at the SP

could be overwritten without any warning.

3 - 37
3.29 Frame Instruction
A Frame instruction restructures the current stack frame by

- decrementing the frame pointer FP to include (optionally) passed parameters in
the local register addressing range; the first parameter passed is then addres-
sable as LO;

- resetting the frame length FL to the actual number of registers needed for the

current stack frame.

It also restores the reserve number of 10 registers in the register part of the stack
to allow any further Call, Trap or Software instructions and clears the cache mode
flag M.

The frame pointer FP is decremented by the Ls-code and the Ld-code is placed in
the frame length FL (FL = 0 is always interpreted as FL = 16). Then the difference
(available number of registers) - (required number of registers + 10) is evaluated and
interpreted as a signed 7-bit integer.

If the difference is not negative, all the registers required plus the reserve of 10 fit
into the register part of the stack; no further action is needed and the Frame
instruction is finished.

If the difference is negative, the content of the old stack pointer SP is compared
with the address in the upper stack bound UB. If the value in the SP is equal or
higher than the value in the UB, a temporary flag is set. Then the contents of the
number of local registers equal to the negative difference evaluated are pushed onto
the memory part of the stack, beginning with the content of the local register ad-
dressed absolutely by SP(7..2) being pushed onto the location addressed by the SP.
After each memory cycle, the SP is incremented by four until the difference is eli-
minated. A trap to Frame Error occurs after completion of the push operation when
the temporary flag is set.

The upper stack bound UB must be set so that a Data Page Fault cannot occur; that
is, the stack space up to the boundary of UB + 32 words must be in resident
memory.

All condition flags remain unchanged.

3 - 38

3.29 Frame Instruction (continued)

Format Notation Operation

LL FRAME, Ld, Ls; FP := FP - Ls code;
FL := Ld code;
M := 0;

difference(6..0) := SP(8..2) + (64 - 10) - (FP + FL);
-- FL = 0 is treated as FL = 16
-- difference is signed, difference(6) = sign bit
-- 64 = number of local registers
-- 10 = number of reserve registers
if difference >= 0 then continue at next instruction;
-- Frame is finished
temporary flag := SP >= UB;
repeat
memory SP~ := register SP(7..2)";
-- local register -> memory
SP := SP + 4;
difference := difference + 1;
until difference = 0;
if temporary flag = 1 then Trap -> Frame Error;

Note: Ls also identifies the same source operand which must be denoted by the Re-
turn instruction to address the saved return PC.

Ld (LO is interpreted as L16) also identifies the register in which the return PC is
being saved by a Trap or Software instruction or by an exception; therefore only local
registers with a lower register code than the interpreted Ld-code of the Frame in-
struction must be used after execution of a Frame instruction.

The reserve of 10 registers is to be used as follows:

- A Call, Trap or Software instruction uses six registers.
- A subsequent exception, occurring before a Frame instruction is executed, uses
another two registers.

- Two registers remain in reserve.

Note that the Frame instruction can write into the memory stack at address locations
up to 32 words higher than indicated by the address in the UB. This is due to the

fact that the upper bound is checked before the execution of the Frame instruction.

3 -39
3.30 Return Instruction

The Return instruction returns control from a subprogram entered through a Call,
Trap or Software instruction or an exception to the instruction located at the return
address and restores the status from the saved return status.

The source operand pair Rs//Rsf is placed in the register pair PC//SR. The program
counter PC is restored first from Rs. Then all bits of the status register SR are re-
placed by Rsf, except the supervisor flag S, which is restored from bit zero of Rs
and except the instruction length code ILC, which is cleared to zero.

If the return occurred from user to supervisor state or if the interrupt-lock flag L
was changed from zero to one on return from any state to user state, a trap to Pri-
vilege Error occurs. Exception processing saves the restored contents of the register
pair PC//SR; an illegally set S or L flag is also saved.

Then the difference between frame pointer FP - stack pointer SP(8..2) is evaluated
and interpreted as a signed 7-bit integer. If the difference is not negative, the regi-
ster pointed to by FP(5..0) is in the register part of the stack; no further action is
then required and the Return instruction is completed.

If the difference is negative, the number of words equal to the negative difference
are pulled from the memory part of the stack and transferred to the register part of
the stack, beginning with the contents of the memory location SP - 4 being trans-
ferred to the local register addressed absolutely by bits 7..2 of SP - 4. After each
memory cycle, the SP is decremented by four until the difference is eliminated. In
case of a Data Page Fault, the SP contains the address of the fault-causing memory
location.

The Return instruction shares its basic OP-code with the Move Double-Word instruc-
tion. It is differentiated from it by denoting the PC as destination register Rd.

The PC or the SR must not be denoted as a source operand; these notations are re-

served for future expansion.

3 - 40

3.30 Return Instruction (continued)

Format Notation

RR RET, PC, Rs;

Operation
old S := S;
old L := L;

PC := Rs(31..1);
SR := Rsf(31..21)//00//Rs(0)//Rsf(17..0);
-- ILC := 0;
-- S := Rs(0);
if old S=0and S =1 or
S=0and old L =0 and L =1 then
trap -> Privilege Error;
difference(6..0) := FP - SP(8..2);
-- difference is signed, difference(6) = sign bit
if difference >= 0 then continue at next instruction;
-- RET is finished
repeat
SP := SP - 4;
register SP(8..2)" := memory SP~;
-- memory -> local register
if Page Fault then
trap -> Data Page Fault;
difference := difference + 1;
until difference = 0;

3 - 41
3.31 Fetch Instruction

The instruction execution is halted until a number of at least n/2 + 1 (1..16) instruc-

tion halfwords succeeding the Fetch instruction are prefetched in the instruction

cache. Since instruction words are fetched, one more halfword may be fetched. The

number n/2 is derived by using bits 4..1 of n, bit 0 of n must be zero.
A Page Fault signalled during the prefetch marks the instruction prefetch address and
causes instruction execution to resume; the trap to Instruction Page Fault is delayed
until the instruction decode meets the marked instruction prefetch address.

The Fetch instruction must not be placed as a delay instruction; when the preceding
branch is taken, the prefetch is undefined.

The Fetch instruction shares the basic OP-code SETxx, it is differentiated by denoting

the SR for the Rd-code (see instruction formats).

n Format Notation Operation
0 Rn FETCH, 1; Wait until n/2 + 1 instruction halfwords are fetched;
30 Rn FETCH, 16;

Note: The Fetch instruction supplements the standard prefetch of instruction words. It
may be used to speed up the execution of a sequence of memory instructions by
avoiding alternating between instruction and data memory pages. By executing a Fetch
instruction preceding a sequence of memory instructions addressing the same data
memory page, the memory accesses can be constrained to the data memory page by
prefetching all required instructions in advance.

A Fetch instruction may also be used preceding a branch into a program loop; thus,

flushing the cache by the first branch repeating the loop can be avoided.

3 - 42
3.32 Software Instructions

The Software instructions cause a branch to the subprogram associated with each
Software instruction. Its entry address (see entry table), deduced from the OP-code of
the Software instruction, is placed in the program counter PC. Data is saved in the
register sequence beginning at register address FP + FL (FL = 0 is interpreted as
FL = 16) in ascending order as follows:
- Stack address of the destination operand
- High-order word of the source operand
- Low-order word of the source operand
- Old program counter PC, containing the return address and the
old S flag in bit zero
- Old status Register SR, ILC contains the instruction-length code
(1) of the software instruction
Then the frame pointer FP is incremented by the old frame length FL and FL is set
to six, thus creating a new stack frame. The cache-mode flag M and the trace-mode
flag T are cleared, the interrupt-lock flag L is set to one. All condition flags remain
unchanged.
Instruction execution then proceeds at the entry address placed in the PC.

Ls or Lsf and Ld may denote the same register.

Format Notation Operation
LL see specific PC := 23 ones//0//OP(11..8)//4 zeros;
instructions (FP + FL)~ := stack address of Ld;

(FP + FL + 1)° := Ls;
(FP + FL + 2)" := Lsf;
(FP + FL + 3)" := old PC(31..1)//old S;
(FP + FL + 4)" := old SR;
FP := FP + FL; -- FL = 0 is treated as FL = 16
FL := 6;
M := 0
T := 0;
L :=1;

Note: At the new stack frame, the stack address of the destination operand can be
addressed as L0, the source operand as L1//L2, the saved PC as L3 and the saved SR
as L4; L5 is free for use as required. As long as the interrupt-lock flag L flag is
kept at one and no Frame instruction or any instruction with the potential to cause
an exception is executed, registers L6..L9 can also be used.

A Frame instruction must be executed before executing any other Software instruc-
tion, Trap or Call instruction, otherwise the beginning of the register part of the
stack at SP could be overwritten without any warning.

3 -43
3.32.1 Do Instruction

The Do instruction is executed as a Software instruction. The associated subprogram
is entered, the stack address of the destination operand and one double-word source
operand are passed to it (see Software instructions for details).

The halfword succeeding the Do instruction will be used by the associated subprogram
to differentiate branches to subordinate routines; the associated subprogram must in-

crement the saved return program counter PC by two.

Format Notation Operation

LL DO xx..., Ld, Ls; execute Software instruction;

"xx..." stands for the mnemonic of the differentiating halfword after the OP-code of
the Do instruction.
The Do instruction must not be placed as delay instruction since then xx... cannot be

located.

Note: The Do instruction provides very code efficient passing of parameters to rou-
tines executing software implemented extensions of the instruction set, like string in-
structions for example.

Branching to unimplemented subordinate routines with the interrupt-lock flag L set to
one must be excluded by bounds checks of the differentiating halfword at runtime;
out-of-range values cannot be securely excluded at the assembly level.

The L flag must be cleared when the execution of a subordinate routine exceeds the

regular interrupt latency time.

Application Note: The definition of subprograms entered via the Do instruction is re-
served for system implementations. The values assigned to the differentiating halfword
xx... after the OP-code of the Do instruction must be in ascending and contiguous
order, starting with zero. This order enables fast range checking for an upper bound

and also avoids unused space in the differentiating branch table.

3 -4
3.32.2 Extend Instruction

The Extend instruction is strictly reserved for future expansion of the instruction set
by instructions executed in hardware. The halfword succeeding the instruction is used
for further differentiation.

In the present version, the Extend instruction is executed as a Software instruction to
provide emulation of unimplemented hardware extensions.

The associated subprogram is entered, the stack address of the destination operand
and the double-word source operand are passed to it (see Software instructions for de-
tails).

The halfword succeeding the EX instruction will be used by the associated subprogram
to differentiate branches to subordinate routines; the associated subprogram must in-

crement the saved return program counter PC by two.

Format Notation Operation

LL EX xx..., Ld, Ls; execute Software instruction;

" stands for the mnemonic of an instruction of the extended instruction set.

"XX...
The Extend instruction must not be placed as delay instruction since then xx... cannot

be located.

Note: Branching to unimplemented subordinate routines with the interrupt-lock flag L
set to one must be excluded by bounds checks of the differentiating halfword at run-

time; out-of-range values cannot be securely excluded at the assembly level.

3 - 45
3.32.3 Floating-Point Instructions

The Floating-Point instructions comply with the ANSI/IEEE standard 754-1985. In the
present version, they are executed as Software instructions. The following description
provides a general overview of the architectural integration.

The basic instructions use single-precision (single-word) and double-precision (double-
word) operands, the instruction set may be extended by the Extend instruction to co-
ver a comprehensive instruction set and extended-precision operands.

All Floating-Point instructions except those defined by an Extend instruction can be
placed as delay instructions.

Except at the Floating-Point Compare instructions, all condition flags remain unchan-
ged to allow future concurrent execution.

The rounding modes FRM are encoded as:

SR(14) = 0; SR(13) = 0; Round to nearest
SR(14) = 0; SR(13) = 1; Round toward zero;
SR(14) = 1; SR(13) = 0; Round toward - infinity
SR(14) = 1; SR(13) = 1; “Round toward + infinity

The floating-point trap enable flags FTE and the exception flags are assigned as:

floating-point accrued actual exception
trap enable FTE exceptions exceptions type
SR(12) G2(4) G2(12) Invalid Operation
SR(11) G2(3) G2(11) Division by Zero
SR(10) G2(2) G2(10) Overflow
SR(9) G2(1) G2(9) Underflow
SR(8) G2(0) G2(8) Inexact

The reserved bits G2(31..13) and G2(7..5) must be zero.

A floating-point Not a Number (NaN) is encoded by bits 30..19 = all ones in the ope-
rand word containing the exponent; all other bits of the operand are ignored for dif-
ferentiating a NaN from a non-NaN.

In the case of an operand word containing a NaN, bit zero = 0 differentiates a quiet

NaN, bit zero = 1 differentiates a signalli be used to en-

(]
4
[+¥]
Z
(e
=
(vl
cr
s
[oid
ow
—
[}
—
E\
I~

«<

code further information.

3 - 46

3.32.3 Floating-Point Instructions (continued)

Format Notation Operation

LL FADD, Ld, Ls; Ld := Ld + Ls;

LL FADDD, Ld, Ls; Ld//Ldf := (Ld//Ldf) + (Ls//Lsf);

LL FSUB, Ld, Ls; Ld := Ld - Ls;

LL FSUBD, Ld, Ls; Ld//Ldf := (Ld//Ldf) - (Ls//Lsf);

LL FMUL, Ld, Ls; Ld := Ld * Ls;

LL FMULD, Ld, Ls; Ld//Ldf := (Ld//Ldf) * (Ls//Lsf);

LL FDIV, Ld, Ls; Ld := Ld / Ls;

LL FDIVD, Ld, Ls; Ld//Ldf := (Ld//Ldf) / (Ls//Lsf);

LL FCVT, Ld, Ls; Ld := Ls//Lsf; -- Convert double -> single
LL FCVTD, Ld, Ls; Ld//Ldf := Ls; -- Convert single -> double
LL FCMP, Ld, Ls; result := Ld - Ls;

Z := Ld = Ls and not unordered;

N := Ld < Ls or unordered;

C := Ld < Ls and not unordered;

V := unordered;

if unordered then Invalid Operation exception;

LL FCMPD, Ld, Ls; result := (Ld//Ldf) - (Ls//Lsf);
Z := (Ld//Ldf) = (Ls//Lsf) and not unordered;
N := (Ld//Ldf) < (Ls//Lsf) or unordered;
C := (Ld//Ldf) < (Ls//Lsf) and not unordered;
V := unordered;
if unordered then Invalid Operation exception;

LL FCMPU, Ld, Ls; result := Ld - Ls;
Z := Ld = Ls and not unordered;
N := Ld < Ls or unordered;
C := Ld < Ls and not unordered;

V := unordered; -- no exception

LL FCMPUD, Ld, Ls; result := (Ld//Ldf) - (Ls//Lsf);
Z := (Ld//Ldf) = (Ls//Lsf) and not unordered;
N := (Ld//Ldf) < (Ls//Lsf) or unordered;
C := (Ld//Ldf) < (Ls//Lsf) and not unordered;
V := unordered; -- no exception

3 - 47
3.32.3 Floating-Point Instructions (continued)

A floating-point instruction, except a Floating-point Compare, can raise any of the
exceptions Invalid Operation, Division by Zero, Overflow, Underflow or Inexact. FCMP
and FCMPD can raise only the Invalid Operation exception (at unordered). FCMPU and
FCMPUD cannot raise any exception.

At an exception, the following additional action is performed:

- Any corresponding accrued-exception flag whose corresponding trap-enable flag is
zero (not enabled) is set to one; all other accrued-exception flags remain un-
changed.

- If a corresponding trap-enable flag is one (enabled), any corresponding actual-ex-
ception flag is set to one; all other actual-exception flags are cleared. The de-
stination remains unchanged.

In the present software version, the software emulation routine must branch to
the corresponding user-supplied trap handler. The (modified) result, the source
operand, the stack address of the destination operand and the address of the
floating-point instruction should be passed to the trap handler. In the future
hardware version, a trap to Range Error will occur; the Range Error handler will
then initiate re-execution of the floating-point instruction by branching to the
entry of the corresponding software emulation routine, which will then act as

described before.

The only exceptions that can coincide are Inexact with Overflow and Inexact with
Underflow. An Overflow or Underflow trap, if enabled, takes precedence over an In-

exact trap; the Inexact accrued-exception flag G2(0) must then be set as well.

3 - 48
3.32.3 Floating-Point Instructions (continued)

The table below shows the combinations of Floating-Point Compare and Branch in-

structions to test all 14 floating-point relations:

Branch Branch exception
relation Compare on true on false if unordered
= FCMPU BE BNE -
?<> FCMPU BNE BE -
> FCMP BGT BLE X
>= FCMP BGE BLT x
< FCMP BLT BGE X
<= FCMP BLE BGT X
? FCMPU BV BNV -
<> FCMP BNE BE X
<=> FCMP -- - X
?> FCMPU BHT BSE -
?>= FCMPU BHE BST -
?7< FCMPU BLT BGE -
<= FCMPU BLE BGT -
?= FCMPU BE,BV BST,BGT -

The symbol ? signifies unordered.

Note: At the test <=> (ordered), no branch after FCMP is required since the result of

the test is an Invalid Operation exception occurred or not occurred.

4 -1
4 Exceptions
4.1 Exception Processing

Exceptions are events which redirect the flow of control to a supervisor subprogram
associated with the type of exception, that is, the program is "trapped" to respond to
the exception. (See a detailed description of exceptions further below.) If exceptions
coincide, the exception with the highest priority takes precedence over all exceptions
with lower priority.

Processing of an exception proceeds as follows:

The entry address (see entry table) of the associated subprogram is placed in the
program counter PC and the supervisor-state flag S is set to one. The old PC is
saved in the register addressed by FP + FL; the old S flag is also saved in bit zero
of this register. The old status register SR is saved in the register addressed by
FP + FL + 1 (FL = 0 is interpreted as FL = 16); the saved instruction-length code
ILC contains (in general, see backtracking) the instruction-length code of the
preceding instruction.

Then the frame pointer FP is incremented by the old frame length FL. and FL is set
to two, thus creating a new stack frame. The cache-mode flag M and the trace-mode
flag T are cleared, the interrupt-lock flag L is set to one. All condition flags remain

unchanged.
Operation

PC := entry address of exception subprogram;
S:= 1

(FP + FL)~ := old PC(31..1)//0ld S;

(FP + FL + 1)" := old SR;

FP := FP + FL; -- FL = 0 is treated as FL = 16
FL := 2;
M := 0;
T := 0;
L :=1;

Note: At the new stack frame, the saved PC can be addressed as L0 and the saved
SR as L1. Since FL = 2, no other local registers are free for use.

A Frame instruction must be executed before the interrupt-lock flag L is cleared,
re instruction or any instruction with the potential to
cause an exception is executed or before an Instruction Page Fault can occur.
Otherwise, the beginning of the register part of the stack at the SP could be
overwritten without any warning.

An entry caused by an exception can be differentiated from an entry caused by a
Trap instruction by the value of FL: FL is set to two by an exception and set to six

by a Trap instruction.

4.2 Exception Types

The exception types are distinguished by a separate trap entry (see entry table) for
each type. They are ordered by priorities, Reset has the highest, Instruction Page

Fault has the lowest priority.

4.2.1 Reset

The Reset exception occurs on a transition of the Reset signal from low to high. It
overrules all other exceptions and is used to start execution at the Reset entry after
power-on.

The load and store pipelines are cleared and all bits of the BCR are set to one by
hardware; all other registers and flags, except those set or cleared explicitly by the
exception processing itself, remain undefined and must be initialized by software. All

reserved bits (except at the BCR) must be cleared.

Note: The frame pointer FP can only be set to a defined value by restoring it from

the FP in the return SR through a Return instruction.

4.2.2 Data Page Fault

A Data Page Fault exception occurs when a Page Fault is signalled from the
(external) memory management unit (MMU) on a memory access into data address
space. The fault-causing instruction can be identified by backtracking. When the
postincrement, next address or stack address mode is used by this instruction, the
content of the address register (Ld or Rd) must be decremented by the specified data
size or by the signed displacement value dis respectively. Except at byte data size,
dis(0) must be treated as zero regardless of its value; at stack address mode, dis(1)
must also be treated as zero.

After correction of the Data Page Fault (by loading the missing page), the instruction
can be repeated. When the fault-causing instruction is placed as delay instruction and
the preceding delayed branch is taken, the Delayed Branch instruction must be
repeated. When the Data Page Fault is caused by a double-word memory instruction
crossing a page boundary, the Data Page Fault could be caused by either the first or

second memory cycle and thus, both pages must be checked.

4 -3
4.2.3 Range, Pointer, Frame and Privilege Error

These exceptions share a common entry since they cannot occur coincidentally at the
same instruction. The error-causing instruction can be identified by backtracking.

A Range Error exception occurs when an operand or result exceeds its value range.

A Pointer Error is caused by an attempted memory access using an address register
(Rd or Ld) with the content zero. The memory is not accessed, but the content of
the address register is updated in case of a postincrement or next address mode.

A Frame Error occurs when the restructuring of the stack frame reaches or exceeds
the upper bound UB of the memory part of the stack. No further Frame instruction
must be executed by the error routine for Pointer, Frame and Privilege Error before
the UB is set to a higher value and thus, an expanded stack frame fits into the
higher stack bound.

A Privilege Error occurs when a privileged operation is executed in user or on return

to user state (see privilege states for details).

4.2.4 Interrupt Exception

An Interrupt exception is caused by an external interrupt signal. Since the interrupt-

lock flag L is set, no further interrupts can occur until the L flag is cleared.

Note: Only a maskable interrupt is provided; a non-maskable interrupt occurring at a
task exchange or at the handling of a Frame Error would cause an inextricable
intermingling of stack data.

The single-entry interrupt scheme used yields a much shorter interrupt latency time
than the conventional vectored interrupt schemes since pending tasks with higher
priority can be tested after the present task context is saved in memory. As an
additional advantage, no specific restricting interrupt protocol is required; task

priorities can be assigned and reassigned dynamically.

4.2.5 Trace Exception

A Trace exception occurs after each execution of an instruction except a Delayed
Branch instruction when the trace mode is enabled (trace flag T = 1) and the trace
pending flag P is one. A Trace exception can also be enforced by a TRACE signal
(see bus signals 5.4) when the interrupt lock flag L is zero and the trace pending flag
P is one.

The P flag in the saved return status register SR must be cleared by the trace
handler to prevent tracing the same instruction again.

The instruction preceding the Trace exception cannot be backtracked since only poten-
tially error-causing instructions can and need be backtracked.

Note: Constraining the TRACE signal to be effective only when interrupts are locked
out inhibits interrupt or trace handler programs to be further interrupted by Trace

exceptions.

4.2.6 Instruction Page Fault

An Instruction Page Fault exception occurs when the instruction decode meets an
instruction address which has been marked by the instruction prefetch control as
having caused a Page Fault signal. Thus, a Page Fault signalled at an instruction
fetch memory access causes no immediate trap; the trap occurs only when an attempt
is made to decode for execution the instruction which could not be fetched.

The return address saved is the address of the missing instruction and thus, no
backtracking is required. The instruction can be repeated after correction by using its

address as return address.

4.3 Exception Backtracking

In the case of a Pointer, Frame, Privilege and Range Error and in the case of a Data
Page Fault exception caused by a delay instruction succeeding a delayed branch taken,
the location of the saved PC contains the address of the delay instruction and the
saved instruction length code ILC contains the length of the Delayed Branch
instruction (in halfwords).

In the case of all other exceptions, the location of the saved PC contains the return
address, that is, the address of the instruction which would have been executed next
if the exception had not occurred. The saved ILC contains the length of the last
instruction except when the last instruction executed was a branch taken; a Return
instruction clears the ILC and thus, the saved ILC after a Return instruction contains

zero.

4.3 Exception Backtracking (continued)

An exception caused by a Pointer, Frame, Privilege or Range Error or by a Data
Page Fault, except following a Return instruction, can be backtracked. For
king, the content of the adjusted saved ILC is subtracted
contained in the location of the saved PC.

If the backtrack-address calculated in this way points to a Delayed Branch instruction,
the error- or fault-causing instruction is a delay instruction with a preceding delayed
branch taken and the address contained in the location of the saved PC points to the
address of this delay instruction.

If the backtrack-address calculated does not point to a Delayed Branch instruction, it
points directly to the error- or fault-causing instruction. This instruction is then
either not a delay instruction or a delay instruction with the preceding delayed branch
not taken.

The error- or fault-causing instruction can then be inspected and the cause of an
error analyzed in detail.

In the case of a Privilege Error or a Data Page Fault, the ILC must be tested for
zero to single out an exception caused by a Return instruction before backtracking.
Thus, an exception caused by a Return instruction can be identified. However, it
cannot be backtracked to the instruction address of the Return instruction because
the return address saved does not succeed the address of the Return instruction. All
other branching instructions cannot be backtracked either. Since these instructions
cause no errors, backtracking is not required.

The stack address of a local register denoted by a backtracked instruction can be

calculated according to the following formula:

stack address of preceding stack frame := stack address of

current stack frame - (((FP - saved FP) modulo 64) * 4);
-- bits 5..0 of the difference (FP - saved FP) are used zero-expanded
-- * 4 converts word difference -> byte difference
-- the stack address of the current stack frame is provided by the

Set Stack Address instruction
stack address of local register := stack address of preceding
stack frame + (local register address code * 4);

-- * 4 converts local register word offset -> byte offset

Note: Backtracking allows a much more detailed analysis of error causes than a more
differentiated trapping could provide. Exception handlers can get more information
about error causes and the precise messages required by most programming languages

can be easily generated.

5-1
5 Bus Interface
5.1 Bus Control General

The processor provides on-chip all functions to control memory and peripheral devices,
including RAS-CAS multiplexing, DRAM refresh and parity generation and checking.
The number of bus cycles used for a memory or I/O access is also defined by the
processor, thus, no external bus controllers are required.

The memory address space is divided into four equal partitions. Bits 31 and 30 of the

address define these partitions as follows:

bits 31, 30:
0 0 DRAM address space MEMO
0 1 ROM or SRAM address space MEM1
1 0 ROM or SRAM address space MEM2
1 1 ROM address space MEM3

The bus timing, refresh control, page fault and parity error disable for memory access
is defined in the bus control register BCR. The bus timing for 1/0 access is defined
by address bits in the I/O address.

An access can be subdivided into three groups of cycles:

- Address setup time. During address setup time, none of the enable signals
READEN or WRTO0..WRT3 is activated high. RASEN is enabled to its last state.
One or more address setup cycles (encoded by one bit) can be specified for
MEM2 or 1/O accesses.

- Access time. During access time, the corresponding CASEN, READEN or
WRTO0..WRT3 signals are activated high. At MEMO, RASEN is also high,
otherwise enabled to the last state.

One to eighf access time cycles (encoded as 0..7 by a 3-bit code respectively)
can be specified for memory or 1/O accesses.

- Bus hold time. During bus hold time, none of the enable signals READEN or
WRTO0..WRT3 is activated high, RASEN is enabled to its last state. Zero to
three bus hold cycles (encoded as 0..3 by a 2-bit code respectively) can be
specified for MEM2, MEM3 and 1I/O accesses.

Additional bus cycles can be specified in BCR for the DRAM (MEMO):

- A RAS precharge time of zero to three cycles (encoded as 0..3 by a 2-bit code
respectively) can be specified.
- A RAS to CAS delay time of zero to three cycles (encoded as 0..3 by a 2-bit

code respectively) can be specified.

5.1 Bus Control General (continued)

The refresh timing for the DRAM (CAS-before-RAS refresh) can be specified by a 2-
bit code in BCR as follows:

00 Refresh after 512 clock cycles
01 Refresh after 256 clock cycles
10 Refresh after 128 clock cycles
11 Refresh disabled

The physical page size of the DRAM is specified by a 3-bit code in BCR as follows:

Capacity of one Row address Column address

Code DRAM chip organization memory block range range

0 256M x 1 / 256M x 4 1024 Mbyte A29..A16 Al5..A2
1 64M x 1 / 64M x 4 256 Mbyte A27..A15 Al4..A2
2 16M x 1 / 16M x 4 64 Mbyte A25..A14 Al3..A2
3 Mx1/4M x 4 16 Mbyte A23..A13 Al2..A2
4 IMx1/IMx4 4 Mbyte A21..A12 All..A2
5 256K x 1 / 256K x 4 1 Mbyte Al9..A11 Al10..A2
6 64K x 1 / 64K x 4 256 Kbyte Al7..A10 A9..A2
7 16K x 1 / 16K x 4 64 Kbyte Al15..A9 A8..A2

The high-order row address (RAS) bits multiplexed to the low-order (CAS) bit positions

at a RAS access are not in any specific order.

For the DRAM, a bit in the BCR specifies also whether a page fault signal is
accepted (enabled, bit = 0) or ignored (disabled, bit = 1) when a new page is
accessed.

The parity checks can be enabled or disabled separately for each of the four address
spaces MEMO0..MEM3.

5.2 Bus Control Register BCR

All bits of the BCR are set to one by RESET#. They are intended to be initiated
according to the hardware enviroment.

The content of the BCR cannot be read by any instruction.

BCR (31..28): Parity check disable for address space MEM3..MEMO
(BCR(31) = 1 disables parity check for MEMS3)

BCR (27): reserved (must always be 1)

BCR (26..24): Access time for address space MEM3 (1..8 cycles)

BCR (23): reserved (must always be 1)
BCR (22..20): Access time for address space MEM2 (1..8 cycles)

BCR (19..18): Access time for address space MEMI1 (1..4 cycles)
BCR (17..16): Access time for address space MEMO (1..4 cycles)

BCR (15): reserved (must always be 1)
BCR (14): Address setup time for address space MEM2 (0..1 cycles)
BCR (13..12): Refresh select (see table)

BCR (11..10): RAS Precharge time (0..3 cycles,
select 0 when MEMO is not a DRAM)

BCR (9..8): RAS to CAS delay time (0..3 cycles,
select 0 when MEMO is not a DRAM)

BCR (7): Page Fault disable (1 = disable)
BCR (6..4): Page size code (see table)
BCR (3..2): Bus hold time for address space 3 (0..3 cycles)

BCR (1..0): Bus hold time for address space 2 (0..3 cycles)

5.3 1/0 Bus Control

With I/O addresses, address setup, access and bus hold time can be specified by bits

in the I/O address as follows:

I0 - Address Decoding

Bits 2..0: Reserved for internal use (bit 2 must be 0 at double word)
Bits 4..3: Bus hold time (0..3 bus hold cycles after read or write access)
Bits 7..5: Access time (1..8 read or write access cycles)

Bit 8: Address setup time (0 or 1 cycle before read or write)

Bits 11..9: 3-bit short 1/0 address

Bits 27..9: 19-bit long 1/O address

Bit 16 is suggested to be specified as zero at a short 1/O address (halfword) and as

one at a long I/0O address (word).

5.4 Bus Signals

In the following signal description, state I = input, O = output and Z = three-state

(inactive).

States Names Use

1 CLK Clock signal. A clock cycle corresponds to a processor cycle,
that is, the clock signal is used undivided.

(0] REQST Request address bus. REQST is signalled high to request the
address bus for the next cycle(s).

(0] REQSTH Request address bus high priority. REQSTH is signalled high to
request the address bus for a refresh cycle. It must be assigned
the highest priority in a system with multiple bus masters.

I GRANT# Grant address bus. GRANT# must be signalled low by external
logic to assert access to the address bus for the next cycle(s).
Grant# must not be combined with a clock. (See recommended
circuits for bus arbitration.) When the processor is the only
busmaster, GRANT# can be tied low.

o/z A31..A2 The address bits A31..A2 represent the address bus. At an

address bus cycle, A31..A2 are activated from three-state to
either low or high; an active high bit signals a "one". A3l is the

most significant bit.

The signals S, 1/0, ACC, are the memory mode signals. They are activated (from
three-state to either low or high) at the same cycle and with the same timing as the

address bus.

o/z S Supervisor state. Active high indicates supervisor state, active

low indicates user state.

0/zZ 1/0 I/0 address space. Active high indicates 1/O address space,
active low indicates memory address space.
I/0 addresses with bit 31 = 1 are reserved for hardware

extensions and system modules.

0o/z ACC Access code. Active high indicates instruction access, active low

indicates data or refresh access.

5.4 Bus Signals (continued)

States Names

(0] AV#
0o/Z AVl

I ACT

I PGFLT

Use

Address Valid. AV# low signals an address bus cycle, that is, it
indicates that the address bus and memory mode signals are
activated. AV# low precedes the address and memory mode

signals by half a clock cycle.

First address cycle. AVl is activated at the same cycle and
with the same timing as the address bus.

AV1 is signalled active high at the first address cycle of a
memory, refresh or I/O access and signalled active low at
(optionally) succeeding address cycles of the same access.

It may be used to synchronize peripheral devices in the (rare)
cases where the timing provided by the processor must be

supplemented.

Address bus active. ACT must be signalled high by the external
control logic whenever the address bus is active (AV# = low),
regardless which bus master (processor or DMA controller)
performs the address bus cycle.

Note: ACT is used internally to separate address bus cycles of
different bus masters by an idle cycle.

ACT is created by OR-ing the AV# signals of all potential bus
masters. Since an active AV# is low, the OR-ing may be
accomplished by connecting all AV# signals to the inputs of a
Nand gate; the output signal of the Nand gate is ACT. No clock
must be used for creating ACT.

Page Fault. PGFLT high signals a Page Fault from an external
MMU to the processor. The PGFLT signal is only accepted when
the processor accesses a new page in the DRAM. Acceptance of
PGFLT can be disabled by a control bit in the bus control
register BCR.

5.4 Bus Signals (continued)

States Names

O/1

0/Z

RASEN

CASEN

Use

Row address enable. RASEN is activated in the same cycle(s) as
the address bits. Active high indicates row address enable,
active low indicates row address disable. Since RASEN is three-
state, its state must be held in an external latch or flip-flop
while RASEN is deactivated; the output of this latch may be
used to control the RAS signal pin of a DRAM.

RASEN is activated low and then again high when the processor
accesses a new page in the DRAM address space, that is when
any of the (high order) RAS address bits is different from the
RAS address bits of the last DRAM access or when the
processor-internal page state is "disabled". The internal page
state is left "enabled" after any DRAM access.

RASEN is activated low, high and then low by a refresh cycle.
The internal page state is left "disabled".

When the address bus is used by another bus master, RASEN is
used as an input to the processor and a processor-internal RAS
state is set or cleared according to the state of RASEN at the
last active address cycle of that bus master. When RASEN was
low at any such address cycle, the processor-internal page state
is cleared to "disabled".

At any non-RAS address cycle, RASEN is activated according to
the internal RAS state, thus, the external RAS latch does not
change its state and the RAS signal is not affected.

Column address enable. CASEN is activated in the same cycle(s)
as the address bits. Active high indicates column address enable,
active low indicates column address disable. CASEN is only used
by a DRAM for column access cycles and for "CAS before RAS"
refresh. CASEN must be forwarded by external latches to the
corresponding CAS cycle(s).

5.4 Bus Signals (continued)

States Names

0o/1

0o/Z

o/1

READEN

WRTO0..WRT3

D31..D0

Use

Read enable. READEN is activated in the same cycle(s) as the
address bits. Active high indicates a read cycle. READEN is
only high at the actual read access cycle(s); it is low at the
(optional) address setup and hold cycle(s).

Data from the data bus D31..D0 is transferred to the register
set or instruction cache only at the cycle corresponding to the
last actual read access cycle.

READEN must be forwarded by external latches to the

corresponding read cycle(s).

Write enable Byte 0..3. The WRTO..WRT3 signals are activated
in the same cycle(s) as the address bits at any memory or I/O
access. Active high indicates a write enable for the
corresponding byte, active low indicates write disable. Any
WRTO..WRT3 signal is only high at the actual write access
cycle(s); it is low at the (optional) address setup and hold
cycle(s). WRT0..WRT3 must be forwarded by external latches to

the corresponding write cycle(s).

Data bus. The signals D31..D0 represent the bidirectional data
bus; active high indicates a "one".

At a read access, data is transferred from the data bus to the
register set or to the instruction cache only at the cycle
corresponding to the last actual read access cycle, thus
inhibiting garbled data from being transferred.

At a write access, the corresponding data bus signals of the
word, halfword or byte to be written are activated at the
address setup and write cycles, they are deactivated at the
(optional) address bus hold cycle(s). WRT0, WRT1, WRT2, WRT3
correspond to byte addresses 0,1,2,3 and activation of D31..D24,
D23..D16, D15..D8, D7..D0 respectively. The data bus signals
corresponding to non-addressed halfwords or bytes remain

deactivated during all write access cycles.

5.4 Bus Signals (continued)

States Names

o/1

o

DP0..DP3

PERR#

RESET#

Use

Note: A halfword or byte to be written is placed from its right-
adjusted position in a register to the addressed halfword or byte
position. Thus, no external re-adjustment of data bit signals is

required.

Data parity signals. DP0..DP3 represent the bidirectional parity
signals; active high indicates a "one". The data parity signals
DP0O, DP1, DP2, DP3 correspond to the data bus signals
D31..D24, D23..D16, D15..D8, D7..D0 respectively. At a write
access, any of the signals DP0..DP3 is activated when its
corresponding data bus signals are also activated.

At a read access, DP0..DP3 are all evaluated at the last read
access cycle regardless of the data size.

Parity "odd" is used, that is, the correct parity bit is "one"

when all bits of the corresponding byte are "zero".

Parity error. PERR# low indicates a parity error occured in the
preceding clock cycle. Since PERR# is signalled free of spikes,
it can be fed directly into an interrupt controller. The signalling
of PERR# can be disabled for each memory address space by
the corresponding bit in the bus control register BCR; an 1/0O
read access does not signal PERR#.

Reset processor. RESET# low resets the processor to the initial
state and halts all activity. RESET# must be low for at least
two cycles. On a transition from low to high, a Reset exception
occurs and the processor starts execution at the Reset entry
(see entry table). The transition may occur asynchronously to the

clock.

5-10

5.4 Bus Signals (continued)

States Names

I INT

I TRACE

Use

Interrupt request. INT high causes an Interrupt exception when
the interrupt lock flag L is zero. INT may be signalled
asynchronously to the clock; it is not stored internally.

The delay time for INT is three cycles. That is, a transition of
INT is effective after a minimum of three cycles. (The response
time may be much higher depending on the number of cycles to
the end of the current instruction or the number of cycles until

the interrupt lock flag L is cleared.)

Trace request. TRACE high causes a Trace exception when the
trace pending flag P is one and the interrupt lock flag L is
zero. TRACE must be signalled synchronously to the clock; it is
not stored internally.

TRACE has a delay time of one cycle. The next clock cycle of
an instruction is always executed (unless interrupted otherwise);
the Trace exception window is then effective after this next cy-
cle until one cycle after TRACE transits to low. That is, a new
instruction to be started in the Trace exception window is hal-
ted by the TRACE signal if the interrupt lock flag L is zero
and the trace pending flag P is one. Trace exceptions can only
occur between instructions, any executing instruction is run to

completion before a Trace exception takes place.

5.5 Bus Cycles

5.5.1 Read Access:

CLK

AVY

AV1

Address Bus

READEN

Data Bus

PERR#

CLK

AVH

AV1

Address Bus

READEN

Dato Bus

PERR#

5-11

general case

=

Address
setup time

0..1 cycles

Access time
1..8 cycles

Address hold time
0..3 cycles

minimum access time

\ [/

[

——

addr. 1

X addr. 2 X oddr. 3

X oddr. 4 addr. 5)(Aqddr 6

SE—-=

-/

=Y dota 1 Y dota 2 Y dota 3 Y data 4 X dola 5

_f‘errg‘l x errﬂZ
1 |

errifﬁ x _
I

5.5.2 Write Access:

CLK

AVH

AV1

Address bus

WRTO..WRT3

Data Bus

CLK

AVH

AV1

Address Bus

WRTO..WRT3

Data Bus

5-12

general case

|

\

_£

N

Address
setup time
0..1 cycles

Access time
1..8 cycles

minimum access time

Address hold time
0..3 cycles

mhmﬁ

L

l

L

7

yoddr.mddr. 2 X oddr. 3

X addr. 4

addr. 5

X oddr. 6

a

FX doto 1Y doto 2 Y data 3 ¥ dota 4 ¥ doto 5 ¥ data 6
l | | | |

5-13

5.5.3 Exchange Access:

CLK | | | []

I\

N

AV1

Address Bus

e
|

READEN

k min. 2 cycles

WRTO..WRT3 / \ |

oo s == T T)——

Address Access Address Address Access Address
setup time |time hold time |[setup time |time hold time

0..1 cycle |1..8 cycles |0..3 cycles [0..1 cycles |1..8 cycles [0..3 cycles

Note: Wait cycles are inserted automatically to guarantee a minimum of two idle cycles
between the end of READEN high and the beginning of the activation of the data bus.

5-14

5.5.4 Read/Write Access (Read followed by Write)

CLK

AV

AV1

Address Bus

READEN

WRTO..WRT3

Data Bus

PERR#

Y oddr. 1 Xaddr. 2 X

J

‘o[

—

read datg —m88—
| |

———

(datc 1 x data 2 Xdoto 3)7—< data 4

errﬂ 1 x error 2
| l

Note: Wait cycles are inserted automatically to guarantee a minimum of two idle cycles
between the end of READEN high and the beginning of a subsequent write access.

5-15

5.5.5 Write/Read Access (Write followed by Read)

CLK L[1 L[1 1 l 1|

— 1cycle g—

Avf L / T\ [

A1 —~/ /

Address Bus —C:X oddr. 1 X oddr- 2 X oddr. 3 Yy—— | X oddr. 4 X oddr. 5

READEN | _/

WRTO..WRT3 'L_/ \—L

Dota Bus ——(data 1 X dota 2 Ydota 3) {dota 4

&——— write datg —4m4m8 > read data
| l l

Note: A wait cycle is inserted automatically to guarantee a minimum of one idle cycle between
the end of any WRTO..WRT3 high and the beginning of o subsequent read access.

5-16

5.5.6 DRAM Access:

1. access 2. access
new page page mode
RAS access CAS access|CAS access

CLk l l l 1 R S I

At VA A

7\ /===

Address Bus -
high order bits D(valid -

Add B
Iowrgfzerubsits x undefinedx row_address Xcol. oddr.Xcol. odd%

1. access 2. access

RASEN AN / &

(Tl
I
I

CASEN _\ /

PGFLT valid
RAS precharge RAS to CAS delay CAS CAS
time time laccess timejaccess time
1..3 cycles 1..3 cycles 1..4 cycles | 1..4 cycles

at Read access:

READEN :—/ J—

Data Bus E— === r read doto Xread doto

1. access 2. access

ot Write access:

WRTO..WRT3 :7 \C E —_

write data ﬁvrite data - =

1. access 2. access

IT1
AN

Data Bus

Note: The window for PGFLT acceptance is always the last cycle of the RAS to CAS delay time.

5 - 17

5.5.7 DRAM Refresh (CAS-before-RAS refresh)

CLK

AV

AV1

Address Bus

RASEN

CASEN

L[L

™

active, undefined

I/yj
j

/

!

/

RAS precharge
time

1..3 cycles

RAS to CAS
delay time

1..3 cycles

CAS access
time

1..4 cycles

Note: The dato bus and the parity signals are disactivated;
READEN and WRTO..WRT3 are active low.

CASEN is activated high during the CAS access time,
the RAS to CAS delay time and during the last cycle
of the RAS precharge time provided thot the RAS precharge

time is longer than one cycle.

)

RASEN low

1 cycle

/A

5-18

5.6 Bus Arbitration

Busmaster C (DMA) principle schematics
REQSTH
highest REQST REQST C
priority RANT
GRANT# c fC
AV AVH C
ACT

Busmaster B (DMA)

REQSTH = prasT B
REQST
GRANT# GRANT# B@
AVH B
AVH #
ACT |

Busmaster A (CPU)

REOSTH REQSTH
lowest REQST |- |REQST A
priority GRANT# A
GRANT# — ACT
ACT

CLK l l I | l l L_]

REQST C / \

GRANT# C (low)
AVH C \ YA

RCOST A (high)
GRANTH A ‘ / \

AVH A /

_|
T\ / . /T

Busraster Busmaster Busmaster
A C A

5-19
5.7 D.C. Characteristics Preliminary

Absolute Maximum Ratings:

Case temperature Tc under Bias 0°C to 85°C
Storage Temperature -65°C to +150°C
Voltage on any Pin

with respect to ground -0.5 to VCC + 0.5V

D.C. Parameters:

Supply Voltage Vee: 5V + 0.25V
Case Temperature T: 0 to 85 C°
Symbol Parameter Min Max Units Notes
ViL Input LOW Voltage -0.3 +0.8 \Y%
ViH Input HIGH Voltage 2.0 Vee + 0.3V
VoL Output LOW Voltage 0.45 \% at 4mA
Vou Output HIGH Voltage 2.4 \Y at ImA
Icc Power Supply Current
CLK = 25 MHz 250 mA Vce @5V
CLK = 20 MHz 210 mA Vee @5V
I Input Leakage Current + 20 HA
o Output Leakage Current + 20 1A
CIN Input Capacitance 10 pF
Co O/I or Output Capacitance 15 pF

CcLk Clock Capacitance 15 pF

5-20

5.8 A.C. Characteristics

Preliminary

TCASE = 0 to 85°C, V¢ = 5V + 0.25V, C, = 50 pF, unless otherwise specified

Min Max
Symbol _ Parameter (ns) (ns) Notes
tl CLK period 40
t2 CLK high time 15
t3 CLK low time 15
t4 CLK rise time
t5 CLK fall time
t6 Address bus float hold time 5
t7a Address bus valid delay time 25 (Cy =40pf)
(except READEN, RASEN)
t7b Address bus valid delay time 27 (C; =50pf)
(READEN, RASEN)
t8 Address bus hold time 5
t9 Address bus float delay time 23
t10 Data bus float hold time 5
tll Write Data valid delay time 33
t12 Write Data hold time 5
tl3 Data bus float delay time 23
tl4 AV#, PERR# low delay time 30
t15 AV#, PERR# high delay time 29
t16 AV#, PERR# high hold time 5
t17 AV#, PERR# low hold time 5
t18 Read data setup time 4
t19 Read data hold time 6
t20 PGFLT setup time 4
t21 PGFLT hold time 8
t22 ACT setup time 2
t23 ACT hold time 5
t24 TRACE setup time 2
t25 TRACE hold time 9
t26 REQST, REQSTH to GRANT#
external delay time tl - 30

5.8 A.C. Characteristics (continued)

2\/_\K

CLK 1.4V

0.8v

A31.A2, 1/0
S, ACC, AV1

\

RASEN, CASEN
READEN
WRTO..WRT3
D31..00

DPO..DP3
at Write

AVH
PERR#

D31..00
DPO..DP3
at Read

PGFLT

ACT

TRACE

REQST
REQSTH

GRANTH

— t14
£ t16

t4

5-21

‘—1118 K 119 r—-_
Al X
{20 [21—
X X.
_-—# 122 K 123 r——
X X
—f 24 K— 2 125 K—
X

126

6 -1
6 Mechanical Data

6.1 Pin Configuration - View from Top Side
R P N M L K J H G

o4y 0y)) ()) Yy)y ()
GNDe VCCe INT DP2 DPO WRT2 WRTO D08 D10

2))y ())y ()))y () O
GNDe ~GNDe RESET# DP3 DP1 WRT3 WRT1 D9 D11

30)y ())y ())y () ()Y O
D7 PERR# GNDe VCCi GNDi VCCi GNDi VCCe GNDe

¢y)y ()
D4 D5 VCCe

5 0y () O)
02 D3 06

6 () () ()
00 01 GNDe

70y |«
NC NC vCCe

1/0 VCCe

0 C) ())
AVT A2 GNDe

noG)y O)
A3 A4 VCCe

2o)y)y O
AS A6 A9

o))y)y))))) ()
A7 A8 GNDe VCCe GNDi VCCi GNDi VCCe GNDe

“oo0)))y)y)y ()) ())
VCCe GNDe NC TRACE CASEN READEN REQSTH ACT Al

/W))y)y))y)y) () O
GNDe GNDe NC PGFLT RASEN AV# REQST GRANT# A10

R P N M L K J H G

GNDi = GND internal (used for internal logic)
VCCi = VCC internal
GNDe = GND external (used for output drivers)

VCCe = VCC external

6.2

10

GND1
VCCi
GNDe

VCCe

6 -2

Pin Configuration - View from Pin Side

A B C D E F G H J K L M N P
o o o o o o [[[¢] o [o o o
GNDe GNDe D18 D16 D14 D12 D10 D8 WRTO WRT2 DPO DP2 INT VCCe
o o) o o o o [o [} [[) o o
VCCe GNDe D195 017 015 D13 om D9 WRT1 WRT3 DP1 DP3 RESET# GNDe
o (<] o <] (<] [[} o o <] o o [o
D22 D21 GNDe VCCe GNDi VCCi GNDe VCCe GNDi VCCi GNDi VCCi GNDe PERR#
[o o [} o
D25 D24 D20 VCCe D5
o o o o (<]
D27 D26 D23 D6 D3
) o [o o
D29 D28 VCCe GNDe D1
o [o [} o
D31 D30 GNDe VCCe NC
o o [} <) o
A31 A30 VCCe GNDe CLK
o [[} o <]
A29 A28 GNDe vCCe 1/0
o [¢) o o <)
A27 A26 VCCe GNDe A2
) o [) o o
A25 A24 GNDe VCCe A4
o o) o o
A23 A22 VCCe A9 A6
o o o o [¢] o o [[o [o [} o
A21 A20 GNDe VCCi GNDi VCCi GNDe VCCe GNDi VCCi GNDi VCCe GNDe A8
o) o [} o o o o [} [o o o)
GNDe GNDe A19 A7 A15 A13 AN ACT REQSTH READEN CASEN TRACE NC GNDe
o [[o [o o o <) o (<] o) o
GNDe VCCe A18 A16 A4 A12 A10 GRANT# REQST AV# RASEN PGFLT NC GNDe
A B C D E F G H J K L M N P

GND internal (used for internal logic)
VCC internal
GND external (used for output drivers)

VCC external

14

15

6.3 Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location

A2...... P10 DO...... R6 GNDe. . ..A1 NC...... R7
A3...... R11 Dl...... P6 GNDe....A14 PERR#...P3 *
Ad...... P11 D2...... RS GNDe....A15 PGFLT. ..M15
AS5...... R12 D3...... P5 GNDe. . ..B1 RASEN. . .L15
R6...... P12 D4...... R4 GNDe. . ..B2 READEN. .K14
A7...... R13 D5...... P4 GNDe....B14 REQST. ..J15
AB...... P13 D6...... N5 GNDe. . ..C3 REQSTH..J14
A9...... N12 D7...... R3 GNDe. ...C7 RESET#. .N2
A10..... G15 D8...... H1 GNDe. . ..C9 S..i.... R9
All..... G14 D9...... H2 GNDe....C11 TRACE. . .M14
A12..... F15 D10..... G1 GNDe....C13 VCCe....A2
A13..... F14 D11..... G2 GNDe....G3 VCCe....B15
Al4.. ... E15 D12..... F1 GNDe....G13 vCCe....C6
A15..... E14 D13..... F2 GNDe. ...N3 vCCe....C8
A16..... D15 D14..... E1 GNDe. . ..N6 VCCe....C10
A7..... D14 D15..... E2 GNDe. . ..N8 VCCe....C12
A18..... C15 D16..... D1 GNDe....N10 VCCe....D3
A19..... c14 D17..... D2 GNDe. ...N13 VCCe....H3
A20..... B13 D18..... c1 GNDe. .. .P2 VCCe....H13
A21..... A13 D19..... c2 GNDe....P14 VCCe....M13
A22..... B12 D20..... c4 GNDe. .. .P15 VCCe. ...N4
A23..... A12 D21..... B3 GNDe. . . .R1 VCCe. .. .N7
A24..... B11 D22..... A3 GNDe. .. .R2 VCCe....N9
A25..... Al D23..... cs GNDe....R15 VCCe....N11
A26..... B10 D24..... B4 GNDi....E3 VCCe. ...P1
A27..... A10 D25..... A4 GNDi....E13 VCCe....R14
A28..... B9 D26..... B5 GNDi....J3 VCCi....D13
A29..... A9 D27..... AS GNDi....J13 VCCi....F3
A30..... B8 D28..... B6 GNDi....L3 VCCi....F13
A31..... A8 D29..... A6 GNDi....L13 VCCi....K3
ACC..... R8 D30..... B7 GRANT#. .H15 VCCi....K13
ACT..... H14 D31..... A7 INT..... N1 VCCi....M3
AVH..... K15 DPO..... L1 1/0..... P9 WRTO....J1
AVI..... R10 DP1..... L2 NC...... N14 WRT1....J2
CASEN...L14 DP2..... M1 NC...... N15 WRT2....K1

CLK..... P8 DP3..... M2 NC...... pP7 WRT3....K2

6.4 Pin Cross Reference by Location

Location Signal Location Signal Location Signal Location Signal

Al...oonn. GNDe CTevunnn.. GNDe H13....... VCCe N10....... GNDe
A2........ vCCe C8........ vCCe Hid....... ACT Nil....... VCCe
Ad........ D22 C9.vnnnn. GNDe H15....... GRANT# N12....... A9
Rd........ D25 C10....... VCCe b I WRTO N13....... GNDe
AS5........ D27 Cil....... GNDe J2........ WRT1 Nid....... NC
A6........ D29 Cl2....... vCCe I3, GNDi N15....... NC
AT...oonn. D31 C13....... GNDe J13....... GNDi Plo...o.... VCCe
AB........ A31 Cla....... A19 Jl14....... REQSTH P2........ GNDe
A9....... .A29 C15....... A18 J15....... REQST P3........ PERR#
A10....... A27 Dl........ D16 Klo.o.o..... WRT2 Pd........ D5
Al1....... A25 D2........ D17 K2........ WRT3 P5........ D3
A12....... A23 D3........ vCCe K3........ vcei P6........ D1
A13....... A21 D13....... VCCi K13....... vCCi PTecenn... NC
Ald....... GNDe D14....... A17 Kld....... READEN P8........ CLK
A15....... GNDe D15....... A16 K15....... AV# P9........ I/0
Bl........ GNDe El........ D14 Ll........ DPO P10....... A2
B2........ GNDe E2........ D15 L2........ DP1 P11....... A4
B3.... D21 E3........ GNDi L3........ GNDi P12....... A6
Bd........ D24 E13....... GNDi L13....... GNDi P13....... A8
B5........ D26 El4....... A15 L14....... CASEN Pl4....... GNDe
B6........ D28 E15....... A4 L15....... RASEN P15....... GNDe
BT.evun... D30 Flo....... D12 Mi........ DP2 Rl........ GNDe
B8........ A30 F2........ D13 M2........ DP3 R2........ GNDe
B9........ A28 F3........ VCCi M3........ VCCi R3........ D7
B10....... A26 F13....... VCCi M13....... VCCe R4........ D4
Bll....... A24 Fl4....... A13 M14....... TRACE R5........ D2
B12....... A22 F15....... A12 MI5....... PGFLT R6........ DO
B13....... A20 Gl........ D10 Nl........ INT R7........ NC
Bl4....... GNDe G2........ D11 N2........ RESET# R8........ ACC
B15....... VCCe G3........ GNDe N3........ GNDe R9........ S
Cloveo.... D18 G13....... GNDe Nd........ vVCCe R10....... AV1
C2.vunnn.. D19 Gl4....... A1 N5........ D6 R11....... A3
C3........ GNDe G15....... A10 N6........ GNDe R12....... A5
Ch........ D20 Hl........ D8 N7........ VCCe R13....... A7
C5.cunnn.. D23 H2........ D9 N8........ GNDe R14....... vCCe

6.5 Package Dimensions

A
k | I L
|]]
PEPOPOPOOOEOOOO®® O %—-=ﬂ=r
©00OOE00OOOEO 06| 5=
oRoRoRoRoRoRCRCRC RN RN RN —
® 6 6 ©® e —
©® 6 © © 6 o —
©© O © O © —
®6 6 ©© 6 —
© 6 6 ©® 6 6 —
© 6 @ © O 6 —
ORCRC ©® 6 6 —
6 6 ® @6 —
® 6 6 ORCRC —
PPPEREEOOOO®O OO O 0 e
PPPEEPEEEOOOO O O O —
0000000000000 00f | =k
pmrm Standoff Pin B
(4 places) — F =
Symbol Inches Millimeters
A 1.598 +— 0.006 40.6 +— 0.15
B 1.400 +- 0.012 3556 +- 0.3
C 0.1 +- 0.012 254 +- 0.3
D 0.018 +- 0.002 0.46 +— 0.05
E 0.197 +- 0.008 50 +- 0.2
F 0.071 +- 0.006 1.8 +- 0.15

